ASEN-6265. Fundamentals of Spectroscopy for Optical Remote Sensing Homework #10 (Molecular Spectroscopy)

- 1. For nitrogen N₂ and oxygen O₂ molecules
 - (a) Given that the equilibrium distances of the N-N and O-O are r_e =1.0940 Å and 1.2074 Å respectively, calculate their moments of inertia.
 - (b) Calculate their rotational constants B_e . The measured spectroscopic rotational constants of N_2 and O_2 are B_0 =1.998 cm⁻¹ and 1.438 cm⁻¹ respectively. Why is there the difference between B_0 and B_e ?
 - (c) Determine the transitions from J=0 to J=1 and from J=1 to J=2 for both molecules in wave numbers, in megahertz, and in eV.
- 2. The vibrational energy spacings for the hydrogen halides are

HF: 3958.4 cm⁻¹ HCl: 2989.7cm⁻¹ HBr: 2559.3 cm⁻¹ HI: 2230.0 cm⁻¹

Calculate the force constant of each hydrogen halide molecule and account for any trend in these force constants.

- 3. Spectroscopic constants of $^{127}I^{35}Cl$ have been measured: v_{vib} = 384.18 cm⁻¹ and $v_{vib}x_e$ = 1.465 cm⁻¹. The bond dissociation energy of $^{127}I^{35}Cl$ has also been measured to be 2.153 eV.
 - (a) Calculate the wave number of the transition between v=0 and v=1.
 - (b) Repeat part (a) for the transition between v=1 and v=2.
 - (c) What is the depth of the molecular potential curve of $^{127}I^{35}Cl$ (that is, what is the value of D_e)?
- 4. Consider the HCl molecule and use the following constants for the X^1S^+ ground state: $v_{vib} = 2989.74 \text{cm}^{-1}$, $v_{vib}x_e = 52.05 \text{cm}^{-1}$, $v_{vib}y_e = 0.056 \text{cm}^{-1}$, $v_{e} = 10.5909 \text{cm}^{-1}$, $v_{e} = 0.3019 \text{cm}^{-1}$, $v_{e} = 1.27460 \text{ Å}$ (the first electronic excited state lies about 77000 cm⁻¹ above the ground state).
 - (a) Calculate the rotational constant D_e.
 - (b) Calculate the first six rotational energy levels (consider the molecule as vibrating rotator).
 - (c) Calculate the first six vibrational energy levels.
 - (d) Sketch the vibration-rotation energy levels you have got.

5. Given the following constants for N_2 ,

	$ ilde{oldsymbol{v}}_e$	B_0	\mathbf{B}_1	D_0 (cm ⁻¹)
N_2	2330.7	1.98957	1.97219	5.76E-6

Where \tilde{v}_e is the vibrational frequency, B_0 , B_1 and D_0 are the rotational constants. (All four quantities are in wavenumber (cm⁻¹) unit.) Shine a 532nm laser beam through a Raman cell containing N_2 , and observe the scattering light to an angle perpendicular to the laser beam. Rayleigh, pure rotational Raman, and vibration-rotational Raman scattering lines will occur.

- (1) What is the Rayleigh scattering light wavelength (nm) and corresponding wavenumber (cm⁻¹)?
- (2) Take this Rayleigh scattering light as the reference of wavenumber, figure out the relative wavenumber of pure rotation Raman (RR) lines (originated from v = 0). Mark the corresponding branch and consider the first 6 lines for each branch.
- (3) Take this Rayleigh scattering light as the reference of wavenumber, figure out the relative wavenumber of vibration-rotational Raman (VRR) lines (only consider v=0 and v=1 vibrational levels and associated rotational levels). Mark the corresponding branch and consider the first 6 lines for each branch.
- (4) For the vibration-rotational Raman lines, calculate the wavelength of the Q-Branch (0-0) transition lines. [(0-0) means from J = 0 to J = 0]
- (5) Assume the transition matrix elements (transition probability) are equal for the Stokes VRR and anti-Stokes VRR, estimate the intensity ratio between the Stokes and the anti-Stokes VRR lines from the Boltzmann factor.

HW #10 is due on Thursday, April 20th, 2017 in class.