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Concept of Remote Sensing

» Remote Sensing is the science and technology of obtaining information
about an object without having the sensor in direct physical contact with
the object. -- opposite to in-sifu methods

» Radiation interacting with an object to acquire its information remotely

SODAR: Sound Detection And Ranging
Remote RADAR: Radiowave Detection And Ranging
SR BUES | LIDAR: Light Detection And Ranging
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Light Detection And Ranging

LIDAR is a very promising remote
sensing tool due to its high
resolution and accuracy.

In combination of modern laser
spectroscopy methods, LIDAR can
detect variety of species and key
parameters, with wide applications.
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Light Detection And Ranging
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“Fancy” Lidar Architecture
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From Searchlight to Modern Lidar

> Light detection and ranging (LIDAR) started with using CW searchlights to
measure stratospheric aerosols and molecular density in 1930s.

» Hulburt [1937] pioneered the searchlight technique. Elterman [1951, 1954, 1966]
pushed the searchlight lidar to a high level and made practical devices.

» The first laser - a ruby laser was invented in 1960 by Schawlow and Townes
[1958] (fundamental work) and Maiman [1960] (construction). The first giant-pulse
technique (Q-Switch) was invented by McClung and Hellwarth [1962].

> The first laser studies of the atmosphere were undertaken by Fiocco and
Smullin [1963] for upper region and by Ligda [1963] for troposphere.

From Aerosol Detection to Spectral Analysis

> The first application of lidar was the detection of atmospheric aerosols and
density: detecting only the scattering intensity but no spectral information.

> An important advance in lidar was the recognition that the spectra of the
detected radiation contained highly specific information related to the species,
which could be used to determine the composition of the object region. Laser-
based spectral analysis added a new dimension to lidar and made possible an
extraordinary variety of applications, ranging from groundbased probing of the
trace-constituent distribution in the tenuous outer reaches of the atmosphere, to
lower atmosphere constituents, to airborne chlorophyll mapping of the oceans to
establish rich fishing areas. 6



Physical Interaction Device
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Absorption Cross—Section (x10~ ! 6m2)

Elastic and Inelastic Scattering
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Physical Interactions in Lidar
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Na Doppler (Wind & Temp) Lidar
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Multiple-Beam Obs.
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[Chu et al., JGR, 2005] |/
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CEDAR Science: Meteor & Metal Specles
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Fe Boltzmann Temperature LIDAR
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PMC Hemispheric Difterence &
Fe/PMC Heterogeneous Chemnstry
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Shuttle Formed High-Z Sporadic Fe

Columbia Space
Shuttle launched
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DIAL & Raman Lidar for Trace Gases

» The atmosphere has many
trace gases from natural or
anthropogenic sources, like
H,O, O,, CO,, NOx, CFC,
SO,, CH,, NH;, VOC, etc.

> Can we use resonance
fluorescence to detect them?

» Quenching effects due to
collisions make fluorescence
impossible in lower
atmosphere for molecules.

» We still need spectroscopy
detection - differential
absorption and Raman lidars!
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Raman Lidar for Water Vapor
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» H,O molecules exhibit specific spectra - fingerprints!

» Raman lidar catches this ‘fingerprints” and avoid the aerosol
scattering in the Raman-shifted channel. Thus, only aerosol
extinction will be dealt with in deriving H,O mixing ratio.
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DIAL for Ozone in Two Decades
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Rayleigh + Raman Integration Lidar
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Direction-Detection Doppler Lidar
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Coherent Doppler Wind Lidar

[ “Heterodyne” Detection from aerosol scattering: the return signal is
optically mixed with a local oscillator laser, and the resulting beat signal

has the frequency (except for a fixed offset) equal to the Doppler shift.
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Backscatter Cross-Section Comparison

Physical Process

Backscatter
Cross-Section

Mechanism

Mie (Aerosol) Scattering

108 - 10°19 cm2sr!

Two-photon process
Elastic scattering, instantaneous

Atomic Absorption and
Resonance Fluorescence

10-13 cm?sr!

Two single-photon process (absorption
and spontaneous emission)
Delayed (radiative lifetime)

Molecular Absorption

10-1° cm?2sr!

Single-photon process

Fluorescence From
Molecule, Liquid, Solid

10-1° cm?2sr!

Two single-photon process
Inelastic scattering, delayed (lifetime)

Rayleigh Scattering
(Wavelength Dependent)

1027 cm?2sr!

Two-photon process
Elastic scattering, instantaneous

Raman Scattering
(Wavelength Dependent)

10739 cm?2sr!

Two-photon process
Inelastic scattering, instantaneous

23




Mobile Solid-State Doppler Lidar
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» NSF Major Research Instrumentation (MRI) mobile Fe-resonance/
Rayleigh/Mie Doppler lidar is an advanced resonance fluorescence lidar
being developed at the University of Colorado, Boulder. It is based on
Pulsed Alexandrite Ring Laser (PARL) for simultaneous measurements of
temperature (30-110 km), wind (75-110 km), Fe density (75-115 km),
aerosols/clouds (10-100 km), and gravity waves in both day and night
through an entire year with high accuracy, precision, & resolution.
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Extending Measurement Range

» Extending downward:

-- Various edge-filter techniques are being
developed to probe lower atmosphere wind
and temperature simultaneously

- White'light lidal‘ zenith 7~

(A) |
adY 20 km

- 240
- 120

» Extending upward:
-- Thermosphere Helium (He) lidar

-- Aurora N," resonance lidar

Driven by Whole Atmosphere Science !!!
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Lidar into Space

Apollo (Moon) MOLA (Mars) SLA (Earth) ICESat], II (Earth) Earth-CARE DIAL for
laser altimeter laser altimeter laser altimeter GLAS, clouds Clouds, aerosols CO,, O,

L | N/

1971 1994 1996 2003 2006 2007—2008 2010 2013 Future

LITE (Earth) CALIPSO (Earth) Phoenix (Mars) ADl\Alus 3-D Reszance

aerosol/cloud aerosol/cloud aerosol/cloud (Earth) Winds fluorescence
1-D wind (Earth) lidar (Earth)

Laser altimeter = Aerosol/cloud = DIAL & wind = Resonance fluorescence

Greece-USA-Canada-UK i3

CALIPSO

ESA feasibility study: to develop a resonance fluorescence Doppler lidar to profile
wind & temperature in MLT for wave dynamics, thermal & chemistry studies. 26



Passive Optical Remote Sensing

NOAA Dobson Spectrometer
305 and 325 nm to measure ozone
from the ground
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Passive: All-Sky-Camera for Airglow

fish-eye lens
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Courtesy of Takuji Nakamura
(NIPR) and Jia Yue (CSU)
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The SABER Instrument Aboard
the TIMED Satellite

TIMED: Thermosphere, Ionosphere,
Mesosphere Energetics & Dynamics

SABER: Sounding of the Atmosphere

Using Broadband Emission Radiometry %
SABER instrument:

* Limb scanning infrared radiometer
* 10 broadband channels (1.27-17 pm)

* Products: kinetic temperature, CO,, O,,
H,0, NO, O,, OH, O, H

[Courtesy of Dr. Artem Feofilov et al., NASA, 2007] 29



Concepts of Spectroscopy

»> Spectroscopy is the study of the interaction between
radiation (photons, phonons, or particles) and matter.

» Spectroscopy is the study of matter by investigating
radiation (photons, phonons, or particles) that is absorbed,
emitted, or scattered by the matter under investigation.

» The radiation includes all forms of electromagnetic
radiation and non-electromagnetic radiation.

-- EM radiation (photons): radiowaves, microwaves, infrared
light, visible light, ultra-violet light, X-ray, etc.

-- Non-EM radiation: phonons (acoustic wave), electrons, etc.
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Classification of Spectroscopy

» According to radiation used in the study, spectroscopy can be
classified to three main types of spectroscopy:

EM spectroscopy, Acoustic Spectroscopy, Mass Spectroscopy.

» We deal with EM spectroscopy here.

—6 —& —2 2 FA
10 \ 10 \ 10 , 1 : 10 . 107 av
1070 10° 10° 10%* 102 1 X
1 1 1 1 1 ] [ 4 [ | 1 L 1
102 1 1072 10~ 10~¢ 10~ %cm
1077 1 107 10 10° 10% ,
1L 1 1 1 1 1 1 t I 1 1 (Cl'Tl )
108 10"° 10'? 10" 10'¢ 10'®
1 1 { 3 1 4 1 ] 1 1 1 Hz
Radio— & Microwaves | Visible . UV i X-rays

Hyperfine |Molecula MoLecuLar Ou ter Inner
Structure otations| Vibrations Electr Electron
Isotopic Shifts ine Structure|Trans. Trans.



Methods to Study Spectroscopy

Two main types of study of spectroscopy -

(1) Fundamental study of matter structure (e.g., atomic or
molecular structure, etc.)

Spectrum study (wavelength, transition probability, etc.) is
the fundamental method to study atomic and molecular
structures.

(2) Applied study of environmental properties (e.g., remote
sensing of atmosphere parameters, chemical analysis)

Identification of chemical composition and measurement of
their quantity using spectroscopy.

Measurement of environmental conditions like wind and
temperature through spectroscopy analysis.
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Why to Study Spectroscopy?

>

Spectroscopy is the fundamental for many modern sciences and
technologies. Spectroscopy has found very wide applications.

Spectroscopy is an very important approach to study the fundamental
matter (fundamental particles, atoms, molecules, etc.) structure and
internal interaction.

Spectroscopy is often used in physics and analytical chemistry for the
identification of substances through the spectrum emitted from them or
absorbed in them.

Spectroscopy is also heavily used in astronomy and remote sensing. They
are used either to measure the chemical composition and physical
properties of objects or to measure related environmental properties like
velocities and temperatures from the Doppler shift and broadening of
spectral lines.

Spectroscopy is the fundamental for all remote sensing technologies.

We want to give students the abilities and fundamental knowledge to
learn more things -

“Teach students the skills to learn new things”. 2



Lidar & Atmosphere Research

AMO Physics and Lidar Theory:
Spectroscopy, Principles, Laser, Optics, Simulation

Instrumentation: to produce lidar tools
Design, development, test, calibration

Deployment: ®new lidar data
Installation, operation, data collection

Data Analysis: ®new atmosphere data
Data retrieval, data analysis

Science Study: ®new atmosphere knowledge
Literature survey, ideas generation, simulation

Data Analysis: ®new modeling data
Simulation run, data analysis, ...

Numerical Modeling: to produce model tools

Atmospheric Theory and Space Physics:
Principles, Equations, ...



Concluding Remarks

» Spectroscopy is the fundamental for lidar and passive
optical remote sensing, which is very important in full
understanding of the principles and technologies,
innovation of new technologies and instrumentation, and
fully utilizing these remote sensing approaches to study
environment, atmosphere, and space.

» Spectroscopy has also found wide applications in many
other modern sciences and technologies, making it a “must-
learn” knowledge.

» Study of spectroscopy will inspire us for future lidar
innovation or even revolution so that we can answer many
open questions in atmosphere and space research.

» Through the spectroscopy class, we try to help you to gain
the high abilities and skills to learn new things.
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