Chapter 17. Time-Resolved Laser Spectroscopy

The investigation of fast processes, such as radiative or collision-induced decays
of excited levels, isomerization of excited molecules, or the relaxation of an
optically pumped system toward thermal equilibrium, opens the way to study in
details the dynamic properties of excited atoms and molecules. A thorough
knowledge of dynamical processes is of fundamental importance for many
branches of physics, chemistry, or biology.

In order to study these processes experimentally, one needs a sufficiently good
time resolution, which means that the resolvable minimum time interval At must
be shorter than the time scale T of the process under investigation. Thus, this
chapter emphasizes the high time resolution.

The development of ultra-short laser pulses and of new detection technigques has
allowed a very high time resolution in the study of fast processes. The achievable
time resolution has been pushed into the femtosecond range (1 fs = 101 s). The
spectral resolution of most time-resolved techniques is confined by the Fourier
limit Av =a/ AT, where AT is the duration of the short laser pulse and the factor
a = 1 depends on the profile I(t) of the pulse.
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Reactive Intermediates

CsHsO

Figure 14. Reactive mtermediates on the femtosecond tume scale. (Left) Here, tetramethylene, trimethylene, bridged tetramethylene and benzyne are examples of species isolated on this tume scale (see
Figure 12 for others). (Right) Reaction dynamics of azomethane, based on the experimental, femtosecond studies. The ab imitio PES was obtained from state-of-the-art calculations (E. Diau, this laboratory)
which show the two reaction coordinates (C—N) relevant to the dynamics. A third coordinate, which mvolves a twisting motion. was also studied. Note the concerted and nonconcerted pathways. Reference
48.
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Fig.15.8. (a) Potential energy curves for a bound molecule (V) and the first and second
dissociative curves Vi, Va; (b) the expected femtosecond transient signals S(iy, f) versus
the delay time ¢ for A2(R = o0) and (c¢) for A (R*) [15.43]
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Femtosecond Fluorescence Up-conversion Setup
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Generation of Short Laser Pulse

1. Short laser pulse introduced by gain material

2.

About us

Q-Switched laser (Q quality factor)

Keep low Q, prevent laser power build up.
Suddenly increase Q in a very short period, build up laser.
Spinning mirror, Pockels cell...

About ns

Cavity Dumping

Keep high Q, keep high power lasing.
Kick out the laser in a very short period.
Pockels cell, Acoustic-optical Switch...
About ns
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4. Mode Locking Laser

Active, Passive,
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5. Create femtosecond laser
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Self-focussing
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Figure 5 (a) Prism and (b) grating pairs used in the control
of dispersion; r and b indicate the relative paths of arbitrary
long- and short-wavelength rays. ¢; is the (Brewster) angle of
incidence at the prism face. The light is reflected in the plane
p1—p: in order to remove the spatial dispersion shown.

Figure 6 Schematic diagram of a grating-pair pulse stretcher
showing the arrangement for positive dispersion. Gl and G2 are
diffraction gratings, L1 and L2 are wdentical lenses separated by
twice their focal length, £, and M is a mirror acting to double-pass
the beam through the system. The distance {,—f determines the
total dispersion.




Femtosecond Laser Pulse Amplification

;|

Figure 8 Diagram showing the principle of CPA. The oscillator
output (O) 1s stretched in the grating stretcher (S) such that the
red frequency components (r) travel ahead of the blue (b). The
peak intensity is reduced in the process. The stretched pulse
1S then amplified in a regenerative or multipass amplifier (A)
before recompression in a grating-pair compressor (C).

Ultra Short Time Duration
Ultra High Peak Intensity
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Measurement of Ultrashort Pulse
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Figure 16 (a) Schematic diagram illustrating the layout of an
autocorrelator. Two laser beams of femtosecond pulses at
frequency w, are overlapped in a nonlinear crystal such as
BBO. The sum-frequency signal at frequency 2w, as a function
of relative time delay is proportional to the shape of the pulse.
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Fig. 1. Long-distance white-light propagation and control of
nonlinear optical processes in the atmospheres. Images of the
Teramobile fs laser beam propagating vertically were taken
with the charge-coupled device camera at TLS observatory. (A)
Fundamental wavelength, exhibiting signals from more than
20 km and multiple-scattering halos on haze layers at 4- and
9-km altitudes. (B to D) White light (385 to 485 nm) emitted
by the fs laser beam. These images have the same altitude
range, and their common color scale is normalized to allow
direct comparison with that of (A). (B) With GVD precompen-
sation. (C) Without GVD precompensation. (D) With slight
GVD precompensation. The conical emission imaged on a haze
layer is apparent.



