Fundamentals of Spectroscopy for (Optical) Remote Sensing Homework \#9

1. (Textbook Problem 6.3)

A monochromatic laser beam with power $\mathrm{P}=1 \mathrm{~mW}$ is sent through a $1-\mathrm{m}$ long sample cell filled with absorbing molecules. The absorbing transition has the Doppler width $\Delta \omega_{D}$ $=2 \pi \times 10^{9} \mathrm{~Hz}$ and a peak absorption coefficient $\alpha\left(\omega_{0}\right)=10^{-8} \mathrm{~cm}^{-1}$, where ω_{0} is the resonance frequency of the molecule. The laser frequency is modulated while it is tuned to the molecular resonance frequency ω_{0}, i.e., $\omega_{\mathrm{L}}=\omega_{0}+\Delta \omega \cos 2 \pi \mathrm{ft}$, where $\Delta \omega=2 \pi \times 10$ MHz .
(1) Calculate the maximum AC amplitude of the detector output signal for a detector with a sensitivity of $1 \mathrm{~V} / \mathrm{mW}$.
(2) How large is the DC background signal if the detector output is averaged over time?

2. (Textbook Problem 7.1)

(1) A collimated sodium beam is crossed by a single-mode cw dye laser, tuned to the D_{1} transition $3^{2} \mathrm{~S}_{1 / 2} \rightarrow 3^{2} \mathrm{P}_{1 / 2}$ of Na . Calculate the saturation intensity I_{S} if the flux of sodium atoms is $N=n \cdot \bar{v}=10^{15}$ atoms $/ \mathrm{cm}^{2} / \mathrm{s}$. The lifetime τ_{K} of the upper level is τ_{K} $=16 \mathrm{~ns}$.
(2) How large is I_{S} in a sodium cell at $\mathrm{P}_{\mathrm{Na}}=10^{-6}$ mbar with $\mathrm{P}_{\mathrm{Ar}}=10$ mbar additional argon pressure? The pressure broadening is $25 \mathrm{MHz} / \mathrm{mbar}$ for $\mathrm{Na}-\mathrm{Ar}$ collisions.

3. (Textbook Problem 7.3)

In an experiment on polarization spectroscopy, the circularly polarized pump laser causes a change $\Delta \alpha=\alpha^{+}-\alpha^{-}=10^{-2} \alpha_{0}$ of the absorption coefficient. By which angle is the plane of polarization of the linearly polarized probe laser beam at $\lambda=600 \mathrm{~nm}$ tuned after passing through the pumped region with length L, if the absorption without pump laser $\alpha_{0} \mathrm{~L}=5 \times 10^{-2}$?
4. (Textbook Problem 6.1 with corrections)

A monochromatic laser beam is sent through a sample of diatomic molecules. The laser wavelength is tuned to a vibration-rotation transition $\left(v^{\prime \prime}, J^{\prime \prime}\right) \rightarrow\left(v^{\prime}, J^{\prime}\right)$ with an absorption cross section of $\sigma_{i k}=10^{-18} \mathrm{~cm}^{2} .\left(v^{\prime \prime}=0, J^{\prime \prime}=20\right) \rightarrow\left(v^{\prime \prime}=1, J^{\prime \prime}=21\right)$
(1) Estimate the fraction n_{i} / n of molecules in the level ($v_{i}^{\prime \prime}=0, J_{i}^{\prime \prime}=20$) at $\mathrm{T}=300 \mathrm{~K}$ (vibrational constant $\tilde{v}_{e}=2000 \mathrm{~cm}^{-1}$, rotational constant $\mathrm{B}_{\mathrm{e}}=1.5 \mathrm{~cm}^{-1}$).
(2) Calculate the absorption coefficient for a total gas pressure of 10 mbar .
(3) What is the transmitted laser power P_{t} behind an absorption path length of 1 m for an incident power $\mathrm{P}_{0}=100 \mathrm{~mW}$?
5. Choose one of the following spectroscopy methods to describe its principle, experimental setup, required detectors, and applications: photoacoustic spectroscopy, optothermal spectroscopy, ionization spectroscopy, and optogalvanic spectroscopy.

