Fundamentals of Spectroscopy for (Optical) Remote Sensing

 Homework \#8

 Homework \#8}

Note: Problems \#1, 5 and 6 are mandatory while you may choose one from problems \#2-4 Choosing more than one among \#2-4 will get extra credits

1. For nitrogen N_{2} and oxygen O_{2} molecules
(a) Given that the equilibrium distances of the $\mathrm{N}-\mathrm{N}$ and $\mathrm{O}-\mathrm{O}$ are $\mathrm{r}_{\mathrm{e}}=1.0940 \AA$ and $1.2074 \AA$ respectively, calculate their moments of inertia.
(b) Calculate their rotational constants B_{e}. The measured spectroscopic rotational constants of N_{2} and O_{2} are $\mathrm{B}_{0}=1.998 \mathrm{~cm}^{-1}$ and $1.438 \mathrm{~cm}^{-1}$ respectively. Why the difference between B_{0} and B_{e} ?
(c) Determine the transitions from $\mathrm{J}=0$ to $\mathrm{J}=1$ and from $\mathrm{J}=1$ to $\mathrm{J}=2$ for both molecules in wave numbers, in megahertz, and in eV .
2. For HCl , the internuclear distance is $\mathrm{r}_{\mathrm{e}}=0.12746 \mathrm{~nm}$. For this molecule (ignore the difference between r_{e} and r_{0})
(a) Calculate its moment of inertia.
(b) Calculate its rotational spectroscopic constant B_{e}, in units cm^{-1} and MHz .
(c) Calculate the energies of rotational energy levels with $\mathrm{J}=0,1,2, \ldots, 10$.
(d) Calculate the relative populations of the first ten levels at 300 K .
3. The vibrational energy spacings for the hydrogen halides are

HF: $\quad 3958.4 \mathrm{~cm}^{-1}$
HCl: $\quad 2989.7 \mathrm{~cm}^{-1}$
HBr: $\quad 2559.3 \mathrm{~cm}^{-1}$
HI: $\quad 2230.0 \mathrm{~cm}^{-1}$
Calculate the force constant of each hydrogen halide molecule and account for any trend in these force constants.
4. Spectroscopic constants of ${ }^{127} \mathrm{I}^{35} \mathrm{Cl}$ have been measured: $v_{\text {vib }}=384.18 \mathrm{~cm}^{-1}$ and $\nu_{\text {vib }} \mathrm{X}_{\mathrm{e}}=1.465$ cm^{-1}. The bond dissociation energy of ${ }^{127} \mathrm{I}^{35} \mathrm{Cl}$ has also been measured to be 2.153 eV .
(a) Calculate the wave number of the transition between $\mathrm{v}=0$ and $\mathrm{v}=1$.
(b) Repeat part (a) for the transition between $v=1$ and $v=2$.
(c) What is the depth of the molecular potential curve of ${ }^{127}{ }^{35} \mathrm{Cl}$ (that is, what is the value of D_{e})?
5. Consider the HCl molecule and use the following constants for the $\mathrm{X}^{1} \mathrm{~S}^{+}$ground state: v_{vib} $=2989.74 \mathrm{~cm}^{-1}, \quad v_{\text {vib }} X_{e}=52.05 \mathrm{~cm}^{-1}, \quad v_{\text {vib }} \mathrm{y}_{\mathrm{e}}=0.056 \mathrm{~cm}^{-1}, \quad \mathrm{~B}_{\mathrm{e}}=10.5909 \mathrm{~cm}^{-1}, \quad \mathrm{a}_{\mathrm{e}}=0.3019 \mathrm{~cm}^{-1}$, $r_{\mathrm{e}}=1.27460 \AA$ (the first electronic excited state lies about $77000 \mathrm{~cm}^{-1}$ above the ground state).
(1) Calculate the rotational constant D_{e}.
(2) Calculate the first six rotational energy levels (consider the molecule as vibrating rotator).
(3) Calculate the first six vibrational energy levels.
(4) Sketch the vibration-rotation energy levels you have got.
6. Given the following constants for O_{2},
$\begin{array}{ccccc}\tilde{v}_{e} & \mathrm{~B}_{0} & \mathrm{~B}_{1} & \mathrm{D}_{0} & \left(\mathrm{~cm}^{-1}\right)\end{array}$
$\begin{array}{lllll}\mathrm{O}_{2} & 1556.4 & 1.43768 & 1.42188 & 4.85 \mathrm{E}-6\end{array}$

Where \tilde{v}_{e} is the vibrational frequency, $\mathrm{B}_{0}, \mathrm{~B}_{1}$ and D_{0} are the rotational constants. All four quantities are in wavenumber $\left(\mathrm{cm}^{-1}\right)$ unit. Shoot a $355-\mathrm{nm}$ laser beam (tripled Nd:YAG laser) through a Raman cell containing O_{2}, and observe the scattering light to an angle perpendicular to the laser beam. Rayleigh, pure rotational Raman, and vibration-rotational Raman scattering lines will occur.
(1) What is the Rayleigh scattering light wavelength (nm) and corresponding wavenumber $\left(\mathrm{cm}^{-1}\right)$?
(2) Take this Rayleigh scattering light as the reference of wavenumber, figure out the relative wavenumber of pure rotation Raman (RR) lines (originated from $v=0$). Mark the corresponding branch and consider the first 6 lines for each branch.
(3) Take this Rayleigh scattering light as the reference of wavenumber, figure out the relative wavenumber of vibration-rotational Raman (VRR) lines (only consider $v=0$ and $v=1$ vibrational levels and associated rotational levels). Mark the corresponding branch and consider the first 6 lines for each branch.
(4) For the vibration-rotational Raman lines, calculate the wavelength of the Q-Branch (0-0) lines. [(0-0) means from $\mathrm{J}=0$ to $\mathrm{J}=0$]
(5) Assume the transition matrix elements (transition probability) are equal for the Stokes VRR and anti-Stokes VRR, estimate the intensity ratio between the Stokes and the anti-Stokes VRR lines from the Boltzmann factor.

