Fundamentals of Spectroscopy for (Optical) Remote Sensing Homework #8

Note: Problems #1, 5 and 6 are mandatory while you may choose one from problems #2-4 Choosing more than one among #2-4 will get extra credits

- 1. For nitrogen N_2 and oxygen O_2 molecules
 - (a) Given that the equilibrium distances of the N-N and O-O are $r_e=1.0940$ Å and 1.2074 Å respectively, calculate their moments of inertia.
 - (b) Calculate their rotational constants B_e . The measured spectroscopic rotational constants of N₂ and O₂ are $B_0=1.998$ cm⁻¹ and 1.438 cm⁻¹ respectively. Why the difference between B_0 and B_e ?
 - (c) Determine the transitions from J=0 to J=1 and from J =1 to J =2 for both molecules in wave numbers, in megahertz, and in eV.
- 2. For HCl, the internuclear distance is $r_e=0.12746$ nm. For this molecule (ignore the difference between r_e and r_0)
 - (a) Calculate its moment of inertia.
 - (b) Calculate its rotational spectroscopic constant B_e , in units cm⁻¹ and MHz.
 - (c) Calculate the energies of rotational energy levels with J = 0, 1, 2, ..., 10.
 - (d) Calculate the relative populations of the first ten levels at 300K.
- 3. The vibrational energy spacings for the hydrogen halides are

HF:	3958.4 cm^{-1}
HCl:	2989.7cm ⁻¹
HBr:	2559.3 cm ⁻¹
HI:	2230.0 cm^{-1}

Calculate the force constant of each hydrogen halide molecule and account for any trend in these force constants.

- 4. Spectroscopic constants of ¹²⁷I³⁵Cl have been measured: v_{vib} =384.18 cm⁻¹ and $v_{vib}x_e$ = 1.465 cm⁻¹. The bond dissociation energy of ¹²⁷I³⁵Cl has also been measured to be 2.153 eV.
 - (a) Calculate the wave number of the transition between v=0 and v=1.
 - (b) Repeat part (a) for the transition between v=1 and v=2.
 - (c) What is the depth of the molecular potential curve of ${}^{127}I^{35}Cl$ (that is, what is the value of D_e)?

- 5. Consider the HCl molecule and use the following constants for the X¹S⁺ ground state: v_{vib} =2989.74cm⁻¹, $v_{vib}x_e$ =52.05cm⁻¹, $v_{vib}y_e$ =0.056cm⁻¹, B_e =10.5909cm⁻¹, a_e =0.3019cm⁻¹, r_e =1.27460 Å (the first electronic excited state lies about 77000 cm⁻¹ above the ground state). (1) Calculate the rotational constant D_e .
 - (2) Calculate the first six rotational energy levels (consider the molecule as vibrating rotator).
 - (3) Calculate the first six vibrational energy levels.
 - (4) Sketch the vibration-rotation energy levels you have got.
- 6. Given the following constants for O_2 ,

 \tilde{v}_e B_0 B_1 D_0 (cm⁻¹)

 O_2 1556.4
 1.43768
 1.42188
 4.85E-6

Where \tilde{v}_e is the vibrational frequency, B_0 , B_1 and D_0 are the rotational constants. All four

quantities are in wavenumber (cm^{-1}) unit. Shoot a 355-nm laser beam (tripled Nd:YAG laser) through a Raman cell containing O₂, and observe the scattering light to an angle perpendicular to the laser beam. Rayleigh, pure rotational Raman, and vibration-rotational Raman scattering lines will occur.

- (1) What is the Rayleigh scattering light wavelength (nm) and corresponding wavenumber (cm⁻¹)?
- (2) Take this Rayleigh scattering light as the reference of wavenumber, figure out the relative wavenumber of pure rotation Raman (RR) lines (originated from v = 0). Mark the corresponding branch and consider the first 6 lines for each branch.
- (3) Take this Rayleigh scattering light as the reference of wavenumber, figure out the relative wavenumber of vibration-rotational Raman (VRR) lines (only consider v = 0 and v = 1 vibrational levels and associated rotational levels). Mark the corresponding branch and consider the first 6 lines for each branch.
- (4) For the vibration-rotational Raman lines, calculate the wavelength of the Q-Branch (0-0) lines. [(0-0) means from J = 0 to J = 0]
- (5) Assume the transition matrix elements (transition probability) are equal for the Stokes VRR and anti-Stokes VRR, estimate the intensity ratio between the Stokes and the anti-Stokes VRR lines from the Boltzmann factor.