Fundamentals of Spectroscopy for (Optical) Remote Sensing Homework \#2 (Quantum Mechanics)

1. In lidar remote sensing application, sometimes our return photon signal is so weak that you can practically consider the photons coming back one by one. However, when a Fabry-Perot etalon is used in the lidar receiver, it actually works as a narrowband daytime filter to pass the wanted frequency while rejecting lots of unwanted frequencies. Could you explain this single-photon Fabry-Perot etalon phenomenon from Quantum Mechanics point of view? (You may check optics book or on the web about how a Fabry-Perot etalon works.)
2. Please summarize the postulates and principles of Quantum Mechanics in your own words.
3. In a one-dimensional problem, consider a particle whose wave function is

$$
\psi(x)=N \frac{e^{i p_{0} x / \hbar}}{\sqrt{x^{2}+a^{2}}}
$$

where a and p_{0} are real constants and N is a normalization coefficient.
(1) Determine N so that $\psi(x)$ is normalized.
(2) The position of the particle is measured. What is the probability of finding a result between $-\frac{a}{\sqrt{3}}$ and $+\frac{a}{\sqrt{3}}$?
(3) Calculate the mean value of the momentum of a particle that has $\psi(x)$ for its wave function.
4. The energy operator for harmonic oscillator is

$$
\hat{H}=\frac{1}{2 m} \hat{p}^{2}+\frac{1}{2} \kappa \hat{x}^{2}=\frac{1}{2 m}\left(\hat{p}^{2}+m^{2} \omega_{0}^{2} \hat{x}^{2}\right),
$$

where $\omega_{0}=\sqrt{\kappa / m}$ is the intrinsic angular frequency of the harmonic oscillator. The normalized wave function for the ground state of the oscillator is given by

$$
\psi_{0}(\xi)=\left(\frac{m \omega_{0}}{\pi \hbar}\right)^{1 / 4} e^{-\xi^{2} / 2}
$$

where $\xi=\left(\sqrt{m \omega_{0} / \hbar}\right) x$. (1) Please compute the mean values of the oscillator's momentum and energy. (2) Is this wave function an eigen function of the energy operator \hat{H} (also called Hamilton operator)? If yes, how much is the eigen value?
5. For a particle moving within a range of $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{a}$, its normalized wave function is given by

$$
\psi_{n}(x)= \begin{cases}\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right), & 0<x<a \\ 0, \quad \text { elsewhere }\end{cases}
$$

Is this wave function an eigen function of momentum? Is it an eigen function of kinetic energy? If so,
how much is the corresponding eigen value?
6. A particle's momentum and the position of itself have the commutation relation $\left[\hat{x}, \hat{p}_{x}\right]=i \hbar$. However, the variables between different particles are commuted. In other words, the following relationship exists for particles 1 and 2 :

$$
\left[\hat{x}_{i}, \hat{p}_{j}\right]=i \hbar \delta_{i j}, \quad(i, j=1,2)
$$

Try to prove that the operators $\hat{x}_{1}-\hat{x}_{2}$ and $\hat{p}_{1}+\hat{p}_{2}$ are commuted with each other.
7. (* Extra problem - Not required to finish but you are encouraged to give it a try!)

Please use the following conditions and steps to derive Heisenberg uncertainty relation.
(1) Assume a particle described by a wave packet (see Figues) has a Gaussian wave function $\psi(x)=A e^{-a x^{2} / 2} e^{+i p_{0} x / \hbar}$, where A is the normalization factor $A=(\pi / a)^{-1 / 4}$. The uncertainty of the coordinate x should be given by $\Delta x=\sqrt{\overline{x^{2}}}$. Try to derive its value from the formula $\overline{x^{2}}=\int_{-\infty}^{+\infty} \Psi^{*}(x) x^{2} \Psi(x) d x$.
(2) When expressed in the momentum representation, the wave function is given by $C(p)=\int_{-\infty}^{+\infty} \Psi(x) e^{-i p x / \hbar} \frac{d x}{\sqrt{2 \pi \hbar}}=\sqrt{\frac{1}{a \hbar}} A e^{-\left(p-p_{0}\right)^{2} / 2 a \hbar^{2}}$. The uncertainty of the momentum p should be given by $\Delta p=\sqrt{\left(p-p_{0}\right)^{2}}$. Try to derive its value using the formula $\overline{\left(p-p_{0}\right)^{2}}=\int_{-\infty}^{+\infty} C^{*}(p)\left(p-p_{0}\right)^{2} C(p) d p$.
(3) After obtaining $\Delta \mathrm{x}$ and $\Delta \mathrm{p}$, take the product of $\Delta \mathrm{x}$ and $\Delta \mathrm{p}$ to derive the Heisenberg uncertainty relation.
(4) Try to derive $\Delta p=\sqrt{\overline{\left(p-p_{0}\right)^{2}}}$ in the x representation using the formula $\overline{\left(p-p_{0}\right)^{2}}=\int_{-\infty}^{+\infty} \Psi^{*}(x)\left(\hat{p}-p_{0}\right)^{2} \Psi(x) d x$, where $\hat{p}=-i \hbar \frac{d}{d x}$. Do you get the same result as step (3)? If yes, why?

