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Lecture 35. Spectral Filters for 
LIDAR Applications 

q  Spatial filters


-- Considerations on beam divergence and FOV


q  Interference filters


q  Daytime filters: Fabry-Perot interferometers


q  Daytime filters: Faraday filters


q  Atomic and molecular absorption filters
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Spatial Filters 
Considerations on Beam Divergence & FOV 

2 

Small laser beam divergence


 
à small receiver field of view (FOV)




-- A very effective way to reduce daytime background


Whether a small beam divergence thus small FOV can be used is 
mainly determined by two factors –

1)  Will the atmosphere saturation be resulted? If yes, then we 

cannot use small divergence and FOV.

2)  Is the laser spatial mode good enough (TEM00 mode) to 

achieve small beam divergence, enabling small FOV?


How much FOV is suitable? FOV is usually larger than the claimed 
beam divergence to tolerate the fluctuations in the beam pointing.
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Spectral Filters:  
Interference Filters & Fabry-Perot Etalons 
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IF and FPI are based on multiple beam interference.
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Multiple Beam Interference 

q  Phase difference between two adjacent beams is given by


€ 

δ =
2π
λ
ΔL =

2π
λ
2nh cos i

q  In the figure, t and r are the amplitude-transmission and 
reflection coefficients. Intensity transmission and reflectivity 
are the square of t and r, i.e., T = t2 and R = r2.
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Multiple Beam Interference 
q  Total amplitude is the sum of multiple beam amplitudes


€ 

˜ U T = At ʹ t (1+ r 2eiδ + r 4e2iδ + ...) =
At ʹ t 

1− r 2eiδ

q  Thus, the transmission intensity is 


€ 

IT = ˜ U T ˜ U T
* =

A2 t ʹ t ( )2

1− r 2eiδ( ) 1− r 2e−iδ( )
=

I0(1− r 2)2

1−2r 2 cosδ + r 4

q  Recall R = r2, therefore, we have


€ 

IT =
I0

1+
4Rsin2(δ /2)
(1− R)2
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Multiple Beam Interference 
q  When δ = 2kπ, the transmission light reaches maximum, 
which determines the transmission wavelength or frequency. 

q  If incident angle i = 0, transmission wavelengths and 
frequencies are determined by


€ 

νk =
c
λk

=
kc
2nh

€ 

FSR=
c
2nh

€ 

Δν k =
1− R
π R

⋅
c
2nh

€ 

F =
FSR
Δν k

=
π R
1− R

€ 

2nh = kλk
q  Thus, the frequency spacing or 
Free-Spectral-Range is


q  Full-Width-at-Half-Maximum 
for each transmission line is 


q  Finesse is defined as
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Interference Fringes 

q  Periodic transmission lines
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Fabry-Perot Etalon 
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Interference Filter 

q  Interference filters are multilayer 
thin-film devices, based on Fabry-Perot 
interferometer.

q  Constructive interference at the 
desired wavelength (spacer d = λ0/2)

- round trip 2d = λ0

q  Destructive interference at other 
wavelengths to block them.
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Multi-Cavity 
Interference 

Filter 
q  Multi-cavity interference 
filter gives better rejection to 
wavelengths other than 
desired wavelength
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Interference Filter 

q  Colored glass etc is optional to further block wavelengths 
far away from desired wavelength, especially at shorter end.
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Combination of Interference Filter 
and Etalon in Lidar Receiver 

q  Typical bandwidth of F-P etalon in lidar receiver is 
about 10-30 GHz.
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Spectral Filters: Faraday Filters 
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See textbook Chapter 5


FADOFs (Faraday Anomalous Dispersion Optical Filters) 
are based on the magnetic-field induced Faraday 

rotation effect of linear polarization of light.
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Faraday Effect 

q  Refraction index n of dilute Na vapor 


χ is the electric susceptibility of Na vapor


q  Faraday effect is the rotation of light polarization by some 
media under magnetic field. 
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Optical Activity vs. Waveplate Retardation 

15 

The decomposition of linearly polarized light is based on the 
orthogonal eigenstates of a crystal. For example, optical activity 
has L and R circular polarizations as its eigen-vibrations, while 
wave plate has o and e linear polarization as its eigne-vibrations. 

optic axis çè


z = 0
 z(π/2)
 z(π)


!
k

Wave plate


Optical activity: linearly polarized light 
propagates along the optic axis with the 
linear polarization rotating along the way.  
-- “Circular polarization birefringence” 

Waveplate retardation: linearly polarized light propagates perpendicular 
to the optic axis and the polarization changes its state along the way.  
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Faraday Rotator: Magnetic-Field-
Induced Optical Activity 

16 

!
B

Magneto-Optic (MO) crystal: Field-induced optical activity or 
magnetically induced optical activity (polarization rotation)

Light must propagate along the optic axis which is defined by 
the external magnetic field.
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Faraday Rotator: Magnetic-Field-
Induced Optical Activity 

17 

Naturally occurring 
optical activity 

Faraday (B-field-
induced) optical activity 
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Light Velocity vs. Refraction Index 

18 

The light speed in vacuum c is given by
c = 1
ε0µ0ε0 – dielectric constant in vacuum


      (the permittivity of a vacuum)

μ0 – permeability in vacuum


ε – relative dielectric constant 

μ – relative permeability


The phase velocity of EM wave in medium v is given by


v = 1
ε0εµ0µ

=
c
n

The refraction index of the medium is given by

n = εµ

n = εµ ≈ ε = 1+ χ
Except for ferromagnetic materials, μ≈1 is true for most materials, so  


Χ – macroscopic electric susceptibility of the medium

εm=ε0ε – the dielectric constant (permittivity) of the medium
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Faraday Effect 

q  Refraction index n of dilute Na vapor 


χ is the electric susceptibility of Na vapor


q  Faraday effect is the rotation of light polarization by some 
media under magnetic field. 
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Faraday Effect under Zeeman Splitting 

Dispersion 




Resonance absorption
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Resonance Absorption vs. Dispersion 

21 
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Explanation of Optical Activity 
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When light propagates along the optic axis, it can be 
decomposed to the superposition (synthesis) of a left 
and a right circularly polarized light.  

If two circular polarizations experience different 
refraction indexes, extra phase shift will be introduced.  

Consequently, two circular polarizations recombine to 
form a linear polarization with its orientation rotated. 
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Faraday Filter 
q  Phase shift between two circular polarizations

q  When the phase shift is π, the polarization is rotated by π/2 




LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

Narrowband Daytime Filter:  
Faraday Filter @ Different B and T 

24 

[Kiefer et al., Nature Scientific Reports, 2014]
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Narrowband Daytime Filter:  
Faraday Filter @ Different B and T 

25 
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Narrowband Daytime Filter:  
Faraday Filter @ Different B and T 
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Fluorescence and Rayleigh Scattering 
vs. Doppler Shift 
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Atomic and Molecular Absorption Filter 
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