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“*¥ Lecture 34. Aerosol Lidar (3)
HSRL + Daytime Filter + PMT

J University of Wisconsin HSRL example

d Comparison of aerosol lidar technique

J Summary

) Daytime filters (Faraday vs. FP etalon)

1 PMT operation (analog vs. photon counting)
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University of Wisconsin HSRL on HIAPER
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Courtesy of Dr. Edwin E. Eloranta, University of Wisconsin 3
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Fiber Pinhole Interferometer (PHI)
to measure relative frequency offset

----------

coupler °

Figure 3--Fiber pinhole interferometer.

For the same optical path difference (OPD) setup, the spatial position
of interference pattern will change with the incident laser
frequency, so providing a measurement of relative frequency shift.

24™ ILRC proceeding [Razenkov et al., ILRC, 2008]



LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

| aser Freq Locking with Brillouin Scattering
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Figure 2--The 1odine absorption spectrum. The lidar
operates tuned to the center of line 1109. The
transmission of Brillouin scattered light through the
edge of line 1105 is used to lock the laser wavelength.

24™ ILRC proceeding [Razenkov et al., ILRC, 2008]
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2 Narrowband Daytime Spectral Filter:
Single vs. Double Fabry-Perot Etalons
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Daytime Spatial Filter:
Small FOV vs. Beam Divergence

Small laser beam divergence
- small receiver field of view (FOV)

-- A very effective way to reduce daytime background

Whether a small beam divergence thus small FOV can be used is
mainly determined by two factors -

1) Will the atmosphere saturation be resulted? If yes, then we
cannot use small divergence and FOV.

2) Is the laser spatial mode good enough (TEMOO mode) to
achieve small beam divergence, enabling small FOV?
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HSRL Measurement Results
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Figure 2: Calibrated backscatter cross section image derived using both HSRL data channels. This
image is attenuation corrected and shadowing does not affect the measured cross section until signals are
completely attenuated (black areas). Notice the greatly improved rendition of low density aerosol layers
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Figure 3: Circular depolarization ratio (note: log scale) for all points with particulate to molecular
backscatter ratio >0.2. Water clouds (blue) are easily distinguished from ice clouds (red).



LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

Challenging Questions

J How about if we have multiple wavelengths of elastic scattering lidar
channels, e.g., 1064, 532 and 355 nm simultaneously? Can we derive the
aerosols’ extinction and backscatter coefficient better than single elastic

scattering channel?

S(R,A)) = P(R,A,)R* = Eymn; [ﬂaer (R, A+ B (R,)Ll)]exp[—Zf:[aaer (r,AD+a,,, (r,)Ll)]dr]

S(R.2) = PR, 2R = Egty [ Brey (Ro3)+ B (R, 7 ]exp| 2 I [aaer<r,ﬂg>+amol<m>]dr]

S(RAy) = PRASR? = Eqtty [ B (R 7y) + By (R 7Y |exp| -2 [ [aaer<r,zg>+amol<mg>]dr]
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o Z /3) aerl )\'2

References: Our textbook Chapter 3 on aerosol lidars;

aerl

two short book chapters at our class website:
AerosolLidarChap.pdf and HSRL.pdf
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Summdry

d Aerosol is an important topic in atmospheric science and environmental
research. It can be measured/monitored by hot lidar technologies.

1 Single-channel elastic-scattering lidar can beautifully detect PMC and
PSC backscatter, and monitor the occurrence, height, vertical structure,
etc. However, it is unreliable to derive aerosol extinction.

d Multi-channel lidars like Raman lidar and HSRL provide addition
information by adding Raman channel or separating molecular scattering
from aerosol scattering. Both can measure aerosol backscatter and
extinction nicely. HSRL is more desirable when longer range detection is
needed as Rayleigh scattering is much stronger than Raman scattering.

J Precise aerosol measurements require good spectrum measurements to
distinguish aerosol from molecular signals. High spectral resolution lidar,
especially the ones based on iodine or atomic absorption filters, promises
very bright future.

J Multi-wavelength and polarization detection can help identify aerosol
shape, size, distribution, and number density.

 Aerosol study is growing, and awaiting for more smart lidar ideas. 11



