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Lecture 23. Lidar Error and 
Sensitivity Analysis (2) 

q  Derivation of Errors


q  Background vs. Noise


q  Sensitivity Analysis


q  Summary
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Accuracy vs. Precision in Lidar 
Measurements 

q  The differentiation of metric ratio method described in later slides can 
apply to both systematic and random errors, depending on the nature of 
the errors. Error sources could be systematic bias or random jitter, and 
measurement errors could also be systematic or random errors.


q  For example, the chirp in fa is a systematic error source if it is not 
counted, while the jitter in fa is a random error. à See manual drawing


q  The precision errors caused by the random error sources like laser 
frequency jitter, linewidth fluctuation, and electronic jitter can be 
improved by integrating more shots together - sacrifice of temporal 
resolution, but may not be improved by integrating bins.

q  Random error sources could lead to both random and systematic 
measurement errors. For example, laser central frequency jitter in the 3-
freq ratio technique can lead to warm temperature bias (systematic error) 
in addition to random errors.
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Laser Central Frequency Jitter: 
Random Error vs. Systematic Bias 
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Propagation of Errors 
q  Propagation of Errors is an important aspect in lidar error analysis. This 
is because the temperature, wind, backscatter coefficient, etc. that we 
want to determine are dependent variables that are a function of one or 
more different measured variables (e.g., photon counts, laser frequency 
and linewidth). We must know how to propagate or carry over the 
uncertainties in the measured variables to determine the uncertainty in 
the dependent variables.

q  For example, photon noise causes the uncertainty in the measured 
photon counts, then the photon count uncertainty leads to the uncertainty 
in the temperature and wind ratios RT and RW, which will result in errors 
in the inferred temperature T and wind W. -- Error propagation procedure

q  Basic rules for propagation of error can be found in many textbooks, 
e.g., addition, subtraction, multiplication, division, product of power, and 
mixture of them, along with many other complicated functions.

q  We will introduce a universal procedure through the use of 
differentials of the corresponding ratios RT and RW as illustrated below. 
This method is mathematically based on the Taylor expansion.
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Error Analysis Procedure 

ΔT = ∂T
∂RT

ΔRT +
∂T
∂ fa

Δfa +
∂T
∂ f±

Δf± +
∂T
∂σ L

Δσ L +
∂T
∂vR

ΔvR +
higher −order

terms

q  We use the temperature error derivation for 3-freq Na lidar as 
an example to explain the error analysis procedure using a 
differentiation method. 


q  For 3-frequency technique, we have the temperature ratio


q  Through this ratio RT or further through the effective cross-
section, the temperature T is an implicit function of RT, laser 
frequencies fa, f+, f-, laser linewidth σL, radial wind, etc. Each 
parameter could have some uncertainty or error, leading to errors 
in the measured temperature.

q  Therefore, the temperature error is given by the derivatives


€ 

RT =
σeff ( f+) + σeff ( f−)

σeff ( fa)
=
N( f+) + N( f−)

N( fa)
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Differentiation Method 
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q  The root-mean-square (rms) temperature error is given by


q  The above error equation indicates that many laser parameters 
and radial wind errors could affect the inferred temperature 
because they all influence the effective cross sections. In the 
meantime, photon noise can cause uncertainty in the ratio RT, 
resulting in temperature error.
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q  If the error sources are independent from each other, then 
the means of cross terms are zero. Then we have
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Error Derivation: Implicit Differentiation 
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q  How to derive the error coefficients, like                ? 


q  We may use the implicit differentiation through RT as below:


q  For the photon-noise induced temperature error,


ΔT = 1
∂RT /∂T

⋅ ΔRT =
RT

∂RT /∂T
⋅
ΔRT
RT

=
1
ST
⋅
ΔRT
RT

q  The relative error of RT can be derived in terms of measured 
signal and background photon counts (see later slides).
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Derivation of Error Coefficients 

€ 

RT
∂RT /∂T

=
RT

[RT (T + δT) − RT (T)]/δT

q  The temperature error coefficient can be derived numerically


q  Two approaches to derive the above numerical solution: 

(1)  One way is to use the equation of RT in terms of cross sections. 

You don’t have to go through the entire simulation process each 
time when you change the temperature, but just calculate the RT 
from the effective cross section.


(2)  Another way is to use the equation of RT in terms of photon 
counts, and then go through the entire simulation procedure to 
re-compute RT for each new temperature. This method is more 
universal than the first approach, because not all cases could 
have a RT written in terms of pure physical cross sections.


€ 

RT =
σeff ( f+,T) + σeff ( f−,T)

σeff ( fa,T)

€ 

RT =
N( f+,T) + N( f−,T)

N( fa,T)
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Derivation of ΔRT/RT 
q  We use 2-freq ratio technique of Na lidar as an example to 
derive the relative error ΔRT /RT.
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(1)


(2)


Combining Eq. (1) with Eq. (2), we have
 (3)


Regarding the errors from two frequencies are uncorrelated, we have


(4)


Considering the signal photon counts are derived by subtracting the 
background counts from the total photon counts, the photon count 
uncertainty is given by 


€ 

ΔN fc( )2 = N fc + B, ΔN fa( )2 = N fa + B (5)


2-freq temperature ratio is defined as


Using differentiation method, we have
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Derivation of ΔRT/RT Cont’d 
Ø  Substituting Eq. (5) into Eq. (4) and considering Eq. (1), we obtain
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Ø  Some algebra derivation leads us to the final result


(7)


Ø  If we change the expression to SNR of the peak frequency 
channel, then we have an approximate expression as below:
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where SNR is defined as


€ 

SNRfa ≡
N fa
ΔN fa

=
N fa
N fa + B (9)
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Temperature Error Due to 
Photon Noise 

q  Integrating above equations together, we obtain the equation for 
the temperature error caused by photon noise as below:
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q  The photon counts in the above equation can be written in terms 
of signal to noise ratio (SNR), if it is more convenient or desirable 
for some analyses.
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Sensitivity Analysis 
Ø  Sensitivity Analysis is part of a complete lidar simulation and error 
analysis. It is to answer the question how sensitive the measurement 
errors depend on lidar, atomic, and atmospheric parameters.

Ø  We will show how several key lidar parameters affect measurement 
errors: (1) laser rms linewidth, and (2) laser central frequency. 

Ø  These factors are closely related to instrument design, while other 
factors like cross-talk between temperature and wind error, Hanle 
effect, etc. can be addressed independent of instrument design.

Ø  Sensitivity Analysis helps define the requirements on instruments, 
e.g., linewidth and its stability, central frequency offset and stability, 
frequency shift and its stability.

Ø  One of the main purposes for instrument design is to ensure that 
the accuracy or precision errors caused by lidar parameter 
uncertainties are less than the desired measurement errors, like 1 m/s 
and 1 K for wind and temperature, and also less than the errors caused 
by photon noise.
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Methodology 
(1) Start with the ratio metrics, like RT or RW, that are expressed 
through effective cross-section, e.g., for 3-frequency technique, as





Thus, RT and RW are functions of temperature, wind, laser linewidth, 
laser central frequency, AOM frequency shift, and atomic parameters, 
etc. 
€ 

RT =
σeff ( f+) + σeff ( f−)

σeff ( fa)

€ 

RW =
σeff ( f−)
σeff ( f+)

€ 

RT (T,VR ,σL, fL, fAOM ,...),RW (T,VR ,σL, fL , fAOM ,...)
(2) As an example, the temperature error caused by the uncertainty in 
laser RMS width should be derived as


€ 

ΔT =
∂T

∂σrms
⋅ Δσrms =

∂RT /∂σrms
∂RT /∂T

⋅ Δσrms

€ 

∂T
∂σrms

=
∂RT /∂σrms
∂RT /∂T

€ 

∂T
∂σrms

=
[RT (σrms + δσrms) − RT (σrms)]/δσrms

[RT (T + δT) − RT (T)]/δT

The temperature error coefficient

is derived as


(K/MHz)


Based on principle of derivative of implicit function: 



-- T is an implicit function of σrms through RT.
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Methodology Cont’d 
(3) Considering the nonlinear dependence of error coefficient on laser 
linewidth, actual temperature error can be calculated as (for larger 
uncertainty)


€ 

ΔT =
[RT (σrms + Δσrms) − RT (σrms)]/Δσrms

[RT (T + δT) − RT (T)]/δT
⋅ Δσrms (K)


(4) Both temperature error and error coefficient can be computed for 
each operating point, e.g., T = 200 K, VR = 0 m/s, σrms = 60 MHz, etc. The 
operating points may be varied, e.g., try σrms of 10, 20, 30, 40, 60, 100 
MHz, or T = 150, 200, 250 K, or VR = -20, 0, +20 m/s. 


(5) Such method can be applied to the wind metric RW. 

(6) Also, similar method can be used on laser central frequency, AOM 
frequency shift, etc. for both temperature error and wind error analyses.


Ø This differentiation approach is a method generally applicable for 
lidars using ratio techniques, not only Na Dopper lidar, but also Fe and 
K Doppler lidars, and others like edge-filter technique wind lidars, etc.


15 



LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

Example Results for 3-Freq Na Lidar: 
Laser Linewidth Influence 
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Laser Linewidth and Uncertainty 
Ø  When the laser rms linewidth (σrms) is smaller, the 
temperature and wind errors caused by the same 
uncertainty in laser linewidth are smaller.


Ø  For 60 MHz rms linewidth (like the current dye-laser-
based Na Doppler lidar), 4 MHz rms width uncertainty is 
acceptable.


Ø  If the solid-state Na Doppler lidar has laser rms 
linewidth to about 30 MHz, then the acceptable rms width 
uncertainty can be larger.
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Laser Linewidth vs. Temp Error 
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Example Results for 3-Freq Na Lidar: 
Laser Central Frequency 
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Laser Central Frequency 
including chirp and jitter 

Ø  Wind errors are much more sensitive to the uncertainty 
or bias in the laser central frequency than temperature 
errors.


Ø  To keep less than 1 K temperature error, 10 MHz 
uncertainty or bias in laser central frequency is 
acceptable; however, 10 MHz would result in about 6 m/s 
wind error.


Ø  To keep less than 1 m/s wind error, the uncertainty or 
bias in laser central frequency should be less than 2 MHz.
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Monte Carlo Method 
q  To reveal how random error sources affect the measurement precision 
and accuracy, an approach different than the above analytical 
“differentiation method” is the “Monte Carlo Method”. 

q  It is not easy to repeat lidar observations in reality, but it is definitely 
achievable in lidar simulation and error analysis. The Monte Carlo method is 
to repeat the simulation many times with random sampling of the interested 
lidar or atmospheric or atomic parameters within their random error ranges 
and then check how the measurement results are deviated from the true 
values.

q  For example, the laser central frequency has random errors due to 
frequency jitter. To investigate how it affects the measurements, we may 
run the simulation of single shot many times and for each shot we let the 
laser central frequency randomly pick one value within its jitter range. By 
integrating many shots together, we then look at how the temperature or 
wind ratios are deviated from the expected ratios if all the shots have the 
accurate laser frequency.
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Summary 
q  Lidar simulation, error and sensitivity analyses are the “lidar modeling”. It is 
an integration of complicated lidar remote sensing procedure. Error and 
sensitivity analysis is an important part for lidar research. One approach is to 
use the “differentiation method”, and another one is the Monte Carlo approach.

q  The key is still our understanding of the lidar theory and the physical 
interactions between the laser light and the objects you want to study. Only 
when we clearly understand the interactions in the atmosphere and the entire 
lidar detection procedure could we do good lidar simulation and error analysis.

q  Accuracy and precision are two different concepts for lidar error analysis. 
Accuracy concerns about bias, usually determined by systematic errors. 
Precision concerns about uncertainty, mainly determined by random errors, and 
in lidar photon counting case, mainly by photon noise.

q  The differentiation of metric ratio method can apply to both systematic and 
random errors, depending on the nature of the errors. Error sources could be 
systematic bias or random jitter, and measurement errors could also be 
systematic or random errors. It also works for both error analysis and 
sensitivity analysis.
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