Lecture 16. Temperature Lidar (5)
Resonance Doppler Techniques

- Resonance Fluorescence Na Doppler Lidar
- Na Structure and Spectroscopy
- Scanning Technique versus Ratio Technique
- Principles of Doppler ratio techniques
 - Two-frequency ratio technique
 - Three-frequency ratio technique
 - Comparison of calibration curves
- Na Doppler Lidar Instrumentation
- Summary
Recall “Various Physical Interactions and Techniques are Applied to Doppler Tech”

- When resonance absorption and fluorescence is available (not quenched), the resonance Doppler lidar can be employed to probe Doppler broadening and Doppler shift. It can be atomic resonance fluorescence or molecular resonance fluorescence in the upper atmosphere.

- If molecular absorption is available, then DIAL lidar can be employed to infer the Doppler broadening in molecular absorption for temperature. This is doable in the lower atmosphere.

- Rayleigh scattering experiences Doppler broadening, so it can be measured using various techniques (e.g., edge filter, interferometers, etc.) to infer the temperature.

- High-spectral-resolution lidar (HSRL) can help remove aerosol contamination to reveal Doppler broadening for temperature.

- Vibrational-rotational Raman scattering should experience similar Doppler broadening as Rayleigh scattering, but it has shifted frequencies of return signals, which may help avoid the contamination of aerosol scattering to Rayleigh scattering.
Recall “Doppler Effects in Fe Boltzmann Lidar”

For two channels of Fe Boltzmann lidar,

\[
N_{\text{Norm}}(\lambda_{372}, z) = \frac{N_{Fe}(\lambda_{372}, z)}{N_{R}(\lambda_{372}, z_R)T^2_c(\lambda_{372}, z)} = \frac{\sigma_{\text{eff}}(\lambda_{372}, T, \sigma_L)R_{B\lambda_{372}}n_{Fe}(\lambda_{372}, z)}{4\pi \sigma_R(\lambda_{372}, z_R)n_{R}(z_R)}
\]

\[
N_{\text{Norm}}(\lambda_{374}, z) = \frac{N_{Fe}(\lambda_{374}, z)}{N_{R}(\lambda_{374}, z_R)T^2_c(\lambda_{374}, z)} = \frac{\sigma_{\text{eff}}(\lambda_{374}, T, \sigma_L)R_{B\lambda_{374}}n_{Fe}(\lambda_{374}, z)}{4\pi \sigma_R(\lambda_{374}, z_R)n_{R}(z_R)}
\]

\[
R_T(z) = \frac{N_{\text{norm}}(\lambda_{374}, z)}{N_{\text{norm}}(\lambda_{372}, z)} = \frac{g_2}{g_1} \frac{R_{B374}}{R_{B372}} \left(\frac{\lambda_{374}}{\lambda_{372}} \right)^{4.0117} \frac{\sigma_{\text{eff}}(\lambda_{374}, T, \sigma_{L374})}{\sigma_{\text{eff}}(\lambda_{372}, T, \sigma_{L372})} \exp(-\Delta E / k_BT)
\]

Take the Boltzmann temperature ratio as

Using the Fe atoms in the MLT as an “Fe vapor cell”, if we scan the laser frequency of a single channel of Fe Boltzmann lidar, we will see a convoluted Doppler broadening of the return Fe signals. This wavelength scan can be used to infer temperature if the laser lineshape is well known, or can be used to infer the laser lineshape if the temperature is known.
Doppler Effect in Na D_2 Line Resonance Fluorescence

Na D_2 absorption linewidth is temperature dependent (thermal motions of atom assembly)

Na D_2 absorption peak frequency is wind dependent (bulk motions of atom assembly)

$\lambda_0 = 589.1826$ nm
Na Atomic Energy Levels

Textbook Chapter 5 by Chu and Papen
Na Atomic Parameters

Table 5.1 Parameters of the Na D₁ and D₂ Transition Lines

<table>
<thead>
<tr>
<th>Transition Line</th>
<th>Central Wavelength (nm)</th>
<th>Transition Probability (10^8 s⁻¹)</th>
<th>Radiative Lifetime (nsec)</th>
<th>Oscillator Strength f_{ik}</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁ ($^2P_{1/2} \rightarrow ^2S_{1/2}$)</td>
<td>589.7558</td>
<td>0.614</td>
<td>16.29</td>
<td>0.320</td>
</tr>
<tr>
<td>D₂ ($^2P_{3/2} \rightarrow ^2S_{1/2}$)</td>
<td>589.1583</td>
<td>0.616</td>
<td>16.23</td>
<td>0.641</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>$^2S_{1/2}$</th>
<th>$^2P_{3/2}$</th>
<th>Offset (GHz)</th>
<th>Relative Line Strength a</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₂b</td>
<td>F = 1</td>
<td>F = 2</td>
<td>1.0911</td>
<td>5/32</td>
</tr>
<tr>
<td></td>
<td>F = 1</td>
<td>F = 0</td>
<td>1.0566</td>
<td>5/32</td>
</tr>
<tr>
<td>D₂a</td>
<td>F = 2</td>
<td>F = 3</td>
<td>−0.6216</td>
<td>14/32</td>
</tr>
<tr>
<td></td>
<td>F = 2</td>
<td>F = 1</td>
<td>−0.6806</td>
<td>5/32</td>
</tr>
<tr>
<td></td>
<td>F = 1</td>
<td></td>
<td>−0.7150</td>
<td>1/32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Doppler-Free Saturation–Absorption Features of the Na D₂ Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_a (MHz)</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>−651.4</td>
</tr>
</tbody>
</table>

aRelative line strengths are in the absence of a magnetic field or the spatial average. When Hanle effect is considered in the atmosphere, the relative line strengths will be modified depending on the geomagnetic field and the laser polarization.
Doppler-Limited Na Spectroscopy

- Doppler-broadened Na absorption cross-section is approximated as a Gaussian with rms width σ_{D}

$$\sigma_{abs}(\nu) = \frac{1}{\sqrt{2\pi}\sigma_D} \frac{e^2 f}{4\varepsilon_0 m_e c} \sum_{n=1}^{6} A_n \exp \left(- \frac{[\nu_n - \nu(1 - V_R / c)]^2}{2\sigma_D^2} \right)$$

- Assume the laser lineshape is a Gaussian with rms width σ_L

- The effective cross-section is the convolution of the atomic absorption cross-section and the laser lineshape

$$\sigma_{eff}(\nu) = \frac{1}{\sqrt{2\pi}\sigma_e} \frac{e^2 f}{4\varepsilon_0 m_e c} \sum_{n=1}^{6} A_n \exp \left(- \frac{[\nu_n - \nu(1 - V_R / c)]^2}{2\sigma_e^2} \right)$$

where

$$\sigma_e = \sqrt{\sigma_{D}^2 + \sigma_{L}^2} \quad \text{and} \quad \sigma_D = \sqrt{\frac{k_BT}{M\lambda_0^2}}$$

The frequency discriminator/analyzer is in the atmosphere! -- A huge Na vapor cell – the Na absorption lines as a frequency discriminator.
Doppler Scanning Technique

\[
N_{Na}(\lambda, z) = \left(\frac{P_L(\lambda) \Delta t}{hc/\lambda} \right) \left(\sigma_{\text{eff}}(\lambda) n_{Na}(z) \Delta z \right) \left(\frac{A}{4\pi z^2} \right) \left(\eta(\lambda) T_a^2(\lambda) T_c^2(\lambda, z) G(z) \right)
\]

\[
N_R(\lambda, z_R) = \left(\frac{P_L(\lambda) \Delta t}{hc/\lambda} \right) \left(\sigma_R(\pi, \lambda) n_R(z_R) \Delta z \right) \left(\frac{A}{z_R^2} \right) \left(\eta(\lambda) T_a^2(\lambda, z_R) G(z_R) \right)
\]

\[
\sigma_{\text{eff}}(\lambda, z) = \frac{C(z)}{T_c^2(\lambda, z)} \frac{N_{Na}(\lambda, z)}{N_R(\lambda, z_R)}
\]

where
\[
C(z) = \frac{\sigma_R(\pi, \lambda) n_R(z_R)}{n_{Na}(z)} \frac{4\pi z^2}{z_R^2}
\]

Least-square fitting gives temp
[Fricke and von Zahn, JATP, 1985]
Scanning Na Lidar Results

U. Bonn LIDAR (69°N 16°E) 3. April 1984

Sodium number density (10^9 m$^{-3}$) vs. Altitude (km)

Temperature (K) vs. Altitude (km)

[Fricke and von Zahn, JATP, 1985]
Doppler Ratio Technique

Graph 1:
- X-axis: Frequency Offset (Hz)
- Y-axis: Effective Cross Section (m2)
- Three curves representing different temperatures:
 - Blue: 150 K
 - Green: 200 K
 - Red: 250 K
- Markers indicate f_-, f_a, and f_+.

Graph 2:
- X-axis: Frequency Offset (Hz)
- Y-axis: Effective Cross Section (m2)
- Three curves representing different wind velocities:
 - Blue: -50 m/s
 - Green: 0 m/s
 - Red: +50 m/s
- Markers indicate f_a and f_c.

Mathematical Representation:*

- f_-, f_a, f_+
- f_a and f_c
2-Frequency Doppler Ratio Technique

\[R_T(z) = \frac{N_{\text{norm}}(f_c, z, t_1)}{N_{\text{norm}}(f_a, z, t_2)} = \frac{\sigma_{\text{eff}}(f_c, z) n_{Na}(z, t_1)}{\sigma_{\text{eff}}(f_a, z) n_{Na}(z, t_2)} \approx \frac{\sigma_{\text{eff}}(f_c, z)}{\sigma_{\text{eff}}(f_a, z)} \]

Two frequencies \(f_a \) and \(f_c \) are insensitive to radial wind.
3-Frequency Doppler Ratio Technique

\[
R_T(z) = \frac{N_{\text{norm}}(f_+, z, t_1) + N_{\text{norm}}(f_-, z, t_2)}{N_{\text{norm}}(f_a, z, t_3)} \approx \frac{\sigma_{\text{eff}}(f_+, z) + \sigma_{\text{eff}}(f_-, z)}{\sigma_{\text{eff}}(f_a, z)}
\]

\[
R_W(z) = \frac{N_{\text{norm}}(f_-, z, t_2)}{N_{\text{norm}}(f_+, z, t_1)} \approx \frac{\sigma_{\text{eff}}(f_-, z)}{\sigma_{\text{eff}}(f_+, z)}
\]

Gaussian lineshape

- \(f_a = -651.4\) MHz
- \(f_t = -21.4\) MHz
- \(f_r = -1281.4\) MHz

Raw Data Profiles for 3-Frequency Na Doppler Lidar

- \(f_a\) Channel
- \(f_+\) Channel
- \(f_-\) Channel

Temperature (K)

- \(T = 200\) K

Radial wind velocity (m/s)

- \(v_R = 0\) m/s
Calibration Curves for 3-Freq Tech

For given temperatures and winds, we can compute the Doppler lidar calibration curves from atomic physics and lidar physics.
Main Ideas Behind Ratio Technique

- Three unknown parameters (temperature, radial wind, and Na number density) require 3 lidar equations at 3 frequencies as the minimum ⇒ the highest resolution.

- In the ratio technique, Na number density is cancelled out. So we have two ratios R_T and R_W that are independent of Na density but both dependent on T and W.

- The idea is to derive temperature and radial wind from these two ratios first, and then derive Na number density using derived temperature and wind at each altitude bin.

- However, because the Na extinction coefficient is involved, the upper bins are related to lower bins, and extinction coefficient is related to Na density and effective cross-section. The solution is to start from the bottom of the Na layer and then work bin by bin to the layer top.
Principle of Doppler Ratio Technique

- Lidar equation for resonance fluorescence (Na, K, or Fe)

\[
N_S(\lambda, z) = \left(\frac{P_L(\lambda) \Delta t}{hc/\lambda} \right) \left[\sigma_{\text{eff}}(\lambda, z) n_c(z) R_B(\lambda) + \sigma_R(\pi, \lambda) n_R(z) \right] \Delta z \left(\frac{A}{4\pi z^2} \right) \\
\times \left(T_a^2(\lambda) T_c^2(\lambda, z) \right) \left(\eta(\lambda) G(z) \right) + N_B
\]

\(R_B = 1 \) for current Na Doppler lidar since return photons at all wavelengths are received by the broadband receiver, so no fluorescence is filtered off.

- Pure Na signal and pure Rayleigh signal in Na region are

\[
N_{Na}(\lambda, z) = \left(\frac{P_L(\lambda) \Delta t}{hc/\lambda} \right) \left[\sigma_{\text{eff}}(\lambda, z) n_c(z) \right] \Delta z \left(\frac{A}{4\pi z^2} \right) \left(T_a^2(\lambda) T_c^2(\lambda, z) \right) \left(\eta(\lambda) G(z) \right)
\]

\[
N_R(\lambda, z) = \left(\frac{P_L(\lambda) \Delta t}{hc/\lambda} \right) \left[\sigma_R(\pi, \lambda) n_R(z) \right] \Delta z \left(\frac{A}{2z^2} \right) \left(T_a^2(\lambda) T_c^2(\lambda, z) \right) \left(\eta(\lambda) G(z) \right)
\]

- So we have

\[
N_S(\lambda, z) = N_{Na}(\lambda, z) + N_R(\lambda, z) + N_B
\]
Principle of Doppler Ratio Technique

- Lidar equation at pure molecular scattering region (35-55km)

\[N_S(\lambda, z_R) = \left(\frac{P_L(\lambda) \Delta t}{hc/\lambda} \right) \left[\sigma_R(\pi, \lambda) n_R(z_R) \right] \Delta z \left(\frac{A}{z_R^2} \right) T_a^2(\lambda, z_R) (\eta(\lambda) G(z_R)) + N_B \]

- Pure Rayleigh signal in molecular scattering region is

\[N_R(\lambda, z_R) = \left(\frac{P_L(\lambda) \Delta t}{hc/\lambda} \right) \left[\sigma_R(\pi, \lambda) n_R(z_R) \right] \Delta z \left(\frac{A}{z_R^2} \right) T_a^2(\lambda, z_R) (\eta(\lambda) G(z_R)) \]

- So we have

\[N_S(\lambda, z_R) = N_R(\lambda, z_R) + N_B \]

- The ratio between Rayleigh signals at \(z \) and \(z_R \) is given by

\[\frac{N_R(\lambda, z)}{N_R(\lambda, z_R)} = \frac{[\sigma_R(\pi, \lambda) n_R(z)] T_a^2(\lambda, z) T_c^2(\lambda, z) G(z)}{[\sigma_R(\pi, \lambda) n_R(z_R)] T_a^2(\lambda, z_R) G(z_R)} \frac{z_R^2}{z^2} = \frac{n_R(z)}{n_R(z_R)} \frac{z_R^2}{z^2} T_c^2(\lambda, z) \]

Where \(n_R \) is the (total) atmospheric number density, usually obtained from atmospheric models like MSIS00.
 Principle of Doppler Ratio Technique

- From above equations, the pure Na and Rayleigh signals are

\[N_{Na}(\lambda, z) = N_S(\lambda, z) - N_B - N_R(\lambda, z) \]
\[N_R(\lambda, z_R) = N_S(\lambda, z_R) - N_B \]

- Normalized Na photon count is defined as

\[N_{Norm}(\lambda, z) = \frac{N_{Na}(\lambda, z)}{N_R(\lambda, z_R) T_c^2(\lambda, z) z_R^2} \]

- From physics point of view, the normalized Na count is

\[N_{Norm}(\lambda, z) = \frac{N_{Na}(\lambda, z)}{N_R(\lambda, z_R) T_c^2(\lambda, z)} = \frac{\sigma_{eff}(\lambda, z) n_c(z)}{\sigma_R(\pi, \lambda) n_R(z_R)} \frac{1}{4\pi} \]

- From actual photon counts, the normalized Na count is

\[N_{Norm}(\lambda, z) = \frac{N_{Na}(\lambda, z)}{N_R(\lambda, z_R) T_c^2(\lambda, z)} \frac{z^2}{z_R^2} = \frac{N_S(\lambda, z) - N_B - N_R(\lambda, z)}{N_R(\lambda, z_R) T_c^2(\lambda, z)} \frac{z^2}{z_R^2} \]
\[= \frac{N_S(\lambda, z) - N_B}{N_S(\lambda, z_R) - N_B} \frac{z^2}{z_R^2} T_c^2(\lambda, z) \frac{1}{n_R(z_R)} - \frac{n_R(z)}{n_R(z_R)} \]
Principle of Doppler Ratio Technique

From physics, the ratios of R_T and R_W are then given by

$$R_T = \frac{N_{\text{Norm}}(f_+, z) + N_{\text{Norm}}(f_-, z)}{N_{\text{Norm}}(f_a, z)} = \frac{\sigma_{\text{eff}}(f_+, z)n_c(z) + \sigma_{\text{eff}}(f_-, z)n_c(z)}{\sigma_R(\pi, f_+)n_R(z_R) + \sigma_R(\pi, f_-)n_R(z_R)} = \frac{\sigma_{\text{eff}}(f_+, z) + \sigma_{\text{eff}}(f_-, z)}{\sigma_{\text{eff}}(f_a, z)}$$

$$R_W = \frac{N_{\text{Norm}}(f_+, z) - N_{\text{Norm}}(f_-, z)}{N_{\text{Norm}}(f_a, z)} = \frac{\sigma_{\text{eff}}(f_+, z)n_c(z) - \sigma_{\text{eff}}(f_-, z)n_c(z)}{\sigma_R(\pi, f_+)n_R(z_R) - \sigma_R(\pi, f-)n_R(z_R)} = \frac{\sigma_{\text{eff}}(f_+, z) - \sigma_{\text{eff}}(f_-, z)}{\sigma_{\text{eff}}(f_a, z)}$$

Here, Rayleigh backscatter cross-section is regarded as the same for three frequencies, since the frequency difference is so small. Na number density is also the same for three frequency channels, and so is the atmosphere number density at Rayleigh normalization altitude.
Principle of Doppler Ratio Technique

- From actual photon counts, the ratios R_T and R_W are:

$$R_T = \frac{N_{Norm}(f_+,z) + N_{Norm}(f_-,z)}{N_{Norm}(f_a,z)}$$
$$= \left(\frac{N_S(f_+,z) - N_B}{N_S(f_a,z) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_+,z)} - \frac{n_R(z)}{n_R(z_R)} \right) + \left(\frac{N_S(f_-,z) - N_B}{N_S(f_a,z) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_-,z)} - \frac{n_R(z)}{n_R(z_R)} \right)$$

$$\left(\frac{N_S(f_a,z) - N_B}{N_S(f_a,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_a,z)} - \frac{n_R(z)}{n_R(z_R)} \right)$$

$$R_W = \frac{N_{Norm}(f_+,z) - N_{Norm}(f_-,z)}{N_{Norm}(f_a,z)}$$
$$= \left(\frac{N_S(f_+,z) - N_B}{N_S(f_a,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_+,z)} - \frac{n_R(z)}{n_R(z_R)} \right) - \left(\frac{N_S(f_-,z) - N_B}{N_S(f_a,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_-,z)} - \frac{n_R(z)}{n_R(z_R)} \right)$$

$$\left(\frac{N_S(f_a,z) - N_B}{N_S(f_a,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_a,z)} - \frac{n_R(z)}{n_R(z_R)} \right)$$
How Does Ratio Technique Work?

- From physics, we calculate the ratios of R_T and R_W as

$$R_T = \frac{\sigma_{\text{eff}}(f_+, z) + \sigma_{\text{eff}}(f_-, z)}{\sigma_{\text{eff}}(f_a, z)}$$

$$R_W = \frac{\sigma_{\text{eff}}(f_+, z) - \sigma_{\text{eff}}(f_-, z)}{\sigma_{\text{eff}}(f_a, z)}$$

- From actual photon counts, we calculate the ratios as

$$R_T = \frac{N_{\text{Norm}}(f_+, z) + N_{\text{Norm}}(f_-, z)}{N_{\text{Norm}}(f_a, z)}$$

$$= \left(\frac{N_S(f_+, z) - N_B}{N_S(f_+, z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_+, z)} - \frac{n_R(z)}{n_R(z_R)} \right) + \left(\frac{N_S(f_+, z) - N_B}{N_S(f_+, z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_-, z)} - \frac{n_R(z)}{n_R(z_R)} \right)$$

$$R_W = \frac{N_{\text{Norm}}(f_+, z) - N_{\text{Norm}}(f_-, z)}{N_{\text{Norm}}(f_a, z)}$$

$$= \left(\frac{N_S(f_+, z) - N_B}{N_S(f_+, z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_a, z)} - \frac{n_R(z)}{n_R(z_R)} \right) - \left(\frac{N_S(f_-, z) - N_B}{N_S(f_-, z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_-, z)} - \frac{n_R(z)}{n_R(z_R)} \right)$$
How Does Ratio Technique Work?

- Compute Doppler calibration curves from physics
- Look up these two ratios on the calibration curves to infer the corresponding Temperature and Wind from isoline/isogram.

Isoline / Isogram

\[
R_T = \frac{(N_+ + N_-)}{N_a}
\]

\[
R_W = \frac{(N_+ - N_-)}{N_a}
\]
Na Doppler Lidar Data @ SOR
Comparison of Calibration Curves

- Different metrics of R_W result in different wind sensitivities
- The ratio $R_W = N_+/N_-$ has inhomogeneous sensitivity

![Graph of Calibration Curves]
Comparison of Calibration Curves

- The ratio \(R_w = \frac{(N_+ - N_-)}{N_a} \) has much better uniformity than the simplest ratio.
Comparison of Calibration Curves

- The ratio $R_W = \frac{\ln(N_- / N_+)}{\ln(N_- \times N_+ / N_a^2)}$ has good uniformity.
Na Doppler Lidar Instrumentation

Interaction between radiation and objects

Resonance Doppler lidar has the frequency discriminator in atmosphere - atomic absorption lines! Narrowband transmitter, broadband receiver. High signal levels and accurate knowledge on the frequency discriminator!
Na Doppler Wind and Temperature Lidar

Na Doppler lidar is one of the most successful lidars.

Textbook Chapter 5 by Chu and Papen
STAR Na LIDAR

Modernized DAQ, System Control and Receiver

[Smith et al., ILRC, 2012]
Na Lidar Transmitter

AOM

Na Vapor Cell

Verdi Laser

Ring Dye Laser

Wavemeter
Na Doppler Lidar Receiver

CU-Boulder
STAR Na Doppler Lidar
Primary Focus Telescope
Fiber Coupling

Prime-focus telescope’s primary mirror
MM fiber

Chopper
Multimode Optical Fiber
Receiver Chain

PMT
STAR Na Doppler Lidar DAQ
STAR Na Doppler LIDAR Transmitter

Transmitter

Frequency-Doubled Nd:YAG Pulsed, Q-Switched Laser

Doppler Free Spectroscopy

Hot Na Vapor Cell ND Filter

Photodiode

Oscilloscope

Acousto-Optic Modulation

AOM 20 cm\(^1\) AOM 10 cm\(^1\) AOM 20 cm\(^2\)

Shutter 20 cm\(^2\) Shutter 20 cm\(^1\)

\(\lambda/4\) \(\lambda/4\)

Wave-meter

SM Fiber

SM Fiber

Iris

Ring Dye Laser Control Box

Master Oscillator

Pulsed Dye Amplifier

Optical isolator

Optical isolator

Periscope

Periscope

PMT

Discriminated PMT Signal

Q-Switch Trigger

Analog/Digital/Counter

Channel Connections

Receiver

Data Acquisition & Control

SHG

532 nm

1064 nm

To Sky

To Sky

Newtonian Mirror

Camera Control (USB)

Actuated Steering Mirror

Actuated Steering Mirror

Ring Dye Laser

Coytes

Ring Dye Laser

Coytes

Pulsed, Q-Switched Laser

Pulsed, Q-Switched Laser

CW 532 nm Pump Laser

Single-Mode Ring Dye Laser

TTL

PC

PC

CMOS

CMOS
Master Oscillator and Freq Locking with Doppler-Free Spectroscopy

Na Saturation Absorption Spectrum at D₂

(a) Sodium D₂a Doppler–Free Peak

See detailed explanations on Na Doppler-free saturation–fluorescence spectroscopy in Textbook Chapter 5.2.2.3.2

[Smith et al., OE, 2009]
Doppler-Free Na Spectroscopy

See detailed explanation on Na Doppler-free saturation-fluorescence spectroscopy in Textbook Chapter 5.2.2.3.2

\[\nu_c = \left(\nu_a + \nu_b \right)/2 \]
Summary (1)

- Resonance fluorescence Doppler lidars apply Doppler technique to infer temperature and wind from the Doppler-broadened and Doppler-shifted atomic absorption spectroscopy. The Doppler-limited atomic absorption spectroscopy is inferred from the returned fluorescence intensity ratios at different frequencies.

- Both scanning and ratio techniques can work for the Doppler lidar. With scanning technique, the laser will be operated at many different frequencies, and then a least-square fit derives the width of the atomic absorption line, thus deriving the temperature. Its advantage is to provide more than 3 frequency information, so providing checks on more system parameters. But it requires longer integration time.

- Doppler ratio technique takes advantage of the high temporal resolution feature by limiting the lidar detection to 3 preset frequencies (usually one peak and two wing frequencies) for 3 unknown parameters (T, W, and density).

- By taking the ratios among signals at these three frequencies, R_T and R_W are sensitive functions of temperature and radial wind, respectively.
Summary (2)

- We compute the ratios \(R_T \) and \(R_W \) from atomic physics first to form the lidar calibration curves, and then look up the two ratios calculated from actual photon counts on the calibration curves to infer the corresponding temperature \(T \) and radial wind \(W \).

- Different metrics exhibit different inhomogeneity, resulting in different crosstalk between \(T \) and \(W \) errors.

- There are several different atomic species (Na, K, Fe, Ca, \(\text{Ca}^+ \), etc.) originating from meteor ablation in the mesosphere and lower thermosphere (MLT) region. They all have the potentials to be tracers for resonance fluorescence Doppler lidars to measure the temperature and wind in the MLT region.

- Na and K Doppler lidars are currently near mature status and making great contributions to MLT science.

- Fe Doppler lidar has very high future potential due to the high Fe abundance, advanced alexandrite laser technology, Doppler-free Fe spectroscopy, and bias-free measurements, etc.