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" Lecture 36. Laser Altimeter

J TOF: Altitude Determination and Error Budget
J ICESat error analysis as an example

J Resolution Issues with laser pulse width limitation
Waveform recording vs. micropulse photon counting

J Application Examples of Laser Altimeter
1) Canopy application
2) Snow depth mapping
3) National geography mapping
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1 The range resolution is now determined by the resolution of the ftimer
for recording pulses, instead of the pulse duration width. By computing
the centroid, the range resolution can be further improved.

 Altitude accuracy will be determined by the range accuracy/resolution
and the knowledge of the platforms where the lidar is on.

1 In addition, interference from aerosols and clouds can also affect the
altitude accuracy.

Altitude = Platform Base Altitude - Range = Interference of aerosols and clouds
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Challenges in Laser Altimeter
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Figure 1 - Characteristics of returned laser pulse as a function of surface type. Presence of surface

slope and roughness both broaden the pulse.
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Signal Processing in Altimeter
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Figure 3 - Characterization of transmitted and received pulse waveforms

[Brenner et al., GLAS Algorithm Theoretical Basis Document, 2003]
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Other Chdllenges

J Besides waveform distortions caused by surface slope and roughness,
other factors that could affect the accuracy of laser altimeter include
(1) Orbit and attitude calculations for the platforms

(2) Corrections for atmospheric path-length delays

(3) Corrections for changes in the surface elevations due to tidal effects

(4) ...

(5) How will you have enough penetration and get the reflected signals?
Table 9.10 Ice Altimetry Error Budget

Source Error type Magnitude (cm)
Instrument Single-shot accuracy <10
(3" surface features)
Range bias <5
Laser beam pointing angle uncertainty 18
(1arcsec, 2° surface)
Radial orbit uncertainty 5
Clock synchronization (1 p.sec) 1
Spacecraft Distance uncertainty from S/C POD 0.5
to GLAS zero reference point
Environment  Atmospheric error (10-mbar error, 2
0.23 cm/mbar)

RSS error 0.20
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ICESat Laser Altimeter

Lsaf Emitied /

1064 and
532 nm

e 532 nm: photon
counting atmospheric
sounding

e 1064: waveform-
recording altimetry

e 70 m laser footprint

e 170 m along-track = 1 S Photon Scstter
1 " " 3 due tc Clouds
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repetition rate)
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Accuracy is Sensitive to Number of Observations
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** Calculation of Range: Simple Surface
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Calculation of Range: Simple Surface
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FOV

14

" Forward Scattering Effects from Clouds

Simple Analytical Approximation

Cloud

A. Marshak, GSFC
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Key Factors Contributing to Error

Pointing knowledge

— |CESat was designed with state-of-the-art attitude
determination system

Pointing angle

— Off-nadir pointing possible to 5 degrees to targets of
opportunity, but for ice, we try to keep it under a few tenths of
a degree

— Orbit control to within +1 km of reference track to minimize
pointing
— Pointing control to within 30 m

Spacecraft position
— Radial component currently determined to within about 5 cm
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Key Factors Confributing to Error

* Footprint Size

— Accuracy increases when we smooth out over roughness
elements within the footprint

« Along-track sampling density

— Minimizes interpolation errors
* Pulse width

— 6 ns transmit pulse width
« Beam shape

— We seek to achieve gaussian beam with 86% of the return
from within 70 m

 Transmit and return energy
— Number of samples improves with ability to penetrate clouds
— Better-defined waveforms with higher energies

« Spacecraft and instrument stability

* Forward scattering
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¥ How to Overcome Pulse Width Limit?

O In most laser altimeter applications, there is sufficient (longer than
the laser pulse width) time separation between the transmitted and
received pulses, but users like fo determine the time of flight better
than the pulse duration time (pulse width).
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 When pulse waveforms can be recorded well (with high energy laser
pulse), the resolution can be improved by identifying the peak or leading/
trailing edge and comparing the transmitted & received pulse waveforms.

 In the micropulse case, many micro pulses form a statistical profile, and
better-than-pulse-width resolution can be determined from this profile.
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Lidar Ranging Methods

e Discrete return

- logs time when return
intensity exceeds threshold

) ) Laser  Waveform Discrete Micropulse
- commercial airborne systems Pulse  Recording Return Photon
. Counti
e Waveform recording ? ounting

- records entire return first

intensity profile
- vegetation, atmospheric

applications
e Photon counting
. . . T second
- digital recording of individual —
I as
photon returns
- low power requirements SLICER Commercial MMLA
- good cloud penetration GLAS 1064nm Systems
LVIS ATM

e Profiling or scannin
9 9 courtesy Dave Harding, NASA/GSFC

- scan patterns
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L R S PROF. X C CU-B ,F 2014

Commercial Airborne
lear' System Components

common laser parameters

e scan angle: 0-45°
“ %, * scan rate: 0-70 Hz

LA 5./ _* pulseduration: 6-12ns
| [ . pulse rate: 4-100 kHz
GPS  beam divergence: 0.25-1mrad
| c | ° discrete returns/pulse 4-5
INS | S , common flight parameters
157/ = | « altitude AGL1000-1500 m

0 « ground speed 230 km/h

Ground/snow
‘ surface
4 M‘l—' M \
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Lidar Snow Depth Mapping

e 2 data collections required
- snow free & snow covered
e Filter to remove
‘not-ground’ e aremewms s . sDOW elevation:
(vegetation)
points
e Convert ground

(snow-free) point
elevations to grid

UJ

e Extract grid values ) grid
to snow elevation
points

e Subtract elevations

Courtesy of Jeff Deems, CSU
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CLPX Buffalo Pass
ISA
9 April 2003

discrete-return

1064 nm

airborne scanning
system

1.5 m point
spacing

0.15 m vertical
accuracy

600k data points

Courtesy of
Jeff Deems,
CcSuU
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Future Laser Altimeter

Swath-Imaging Multi-polarization
Photon- counhnq Lidar (SIMPL)

NASA/ESTO IIP

D. Harding, PI 2006-2008

532 & 1064 nm micropulse lasers
1-beam profile in 2007

4-beam pushbroom in 2008 photon-
counting

e parallel and perpendicular
polarizations

e spaceflight instrument & mission
development

courtesy Dave Harding, NASA/GSFC
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National Lidar Mapping Initiative Concept

e long-duration, long-range aircraft (e.g., ER-2)
- high altitude enables wide swath (710 km)

e cross-track scanned push-broom laser
altimeter

- nationally uniform data collection method
- photon-counting, dual-polarized

e potential for complementary instrumentation
- MSI/HIS
- SAR interferometry

e 7-year implementation timeline
- 4-year refresh interval

® base map for extending snow depth mapping
to other basins/regions



NASA/GSFC

NASA
Multi- Agency Dynamic Elevation Lidar
ESTO IIP ESTO II.P National Lidar Mission Concept
Multikilohertz Mi\lh;?‘rpho i;:i“zga':an Mapping Initiative
Micro-Laser Altimeter ) Concept
J. Degnan, PI
2000-2003

Photon-counting Lidar )
D. Harding, PI % TBD

2006 -2008 &'

- ) . - \ spacecraft
‘.\.": . 5 - Y

- ‘-‘;ﬁ'@ NASA ER-2
— pet PPy T\ 3

_ , or
NASA P-38 i 1\ Gulfstream V
|

6 km flight altitude 6 km flight altitude 15 km flight altitude 500 km flight altitude
single-beam scanning multi-beam push-broom push-broom scanning along-track push-broom
532 nm micro-chip laser 532 & 1064 nm fiber laser 10 km wide swath 300 m wide swath
photon counting receiver photon counting receiver 532 + 1064 nm fiber lasers 532 + 1064 nm fiber lasers
Il & L polarization = H20 state  photon counting receiver ~ photon counting receiver

courtesy Dave Harding, NASA/GSFC



