Lecture 29. Lidar Data Inversion (2)

\square Pre-process and Profile-process
\square Main Process Procedure to Derive T and V_{R} Using Ratio Doppler Technique
\square Derivations of n_{c} from narrowband resonance Doppler lidar
\square Derivation of β
\square Derivation of n_{c} from broadband resonance lidar
\square Error analysis for photon noise
\square Summary

Basic Clue (1): Lidar Equation \& Solution

\square From lidar equation and its solution to derive preprocess procedure of lidar data inversion

$$
\begin{array}{r}
N_{S}(\lambda, z)=\left(\frac{P_{L}(\lambda) \Delta t}{h c / \lambda}\right)\left[\sigma_{e f f}(\lambda, z) n_{c}(z) R_{B}(\lambda)+4 \pi \sigma_{R}(\pi, \lambda) n_{R}(z)\right] \Delta z\left(\frac{A}{4 \pi z^{2}}\right) \\
\times\left(T_{a}^{2}(\lambda) T_{c}^{2}(\lambda, z)\right)(\eta(\lambda) G(z))+N_{B} \\
\mathbf{+} \\
N_{S}\left(\lambda, z_{R}\right)=\left(\frac{P_{L}(\lambda) \Delta t}{h c / \lambda}\right)\left[\sigma_{R}(\pi, \lambda) n_{R}\left(z_{R}\right)\right] \Delta z\left(\frac{A}{z_{R}{ }^{2}}\right) T_{a}^{2}\left(\lambda, z_{R}\right)\left(\eta(\lambda) G\left(z_{R}\right)\right)+N_{B} \\
\text { ह } \\
N_{\text {Norm }}(\lambda, z)=\frac{N_{N a}(\lambda, z)}{N_{R}\left(\lambda, z_{R}\right) T_{c}^{2}(\lambda, z)} \frac{z^{2}}{z_{R}^{2}}=\frac{\sigma_{e f f}(\lambda, z) n_{c}(z)}{\sigma_{R}(\pi, \lambda) n_{R}\left(z_{R}\right)} \frac{1}{4 \pi} \\
=\frac{N_{S}(\lambda, z)-N_{B}}{N_{S}\left(\lambda, z_{R}\right)-N_{B}} \frac{z^{2}}{z_{R}^{2}} \frac{1}{T_{c}^{2}(\lambda, z)}-\frac{n_{R}(z)}{n_{R}\left(z_{R}\right)}
\end{array}
$$

Main Ideas to Derive Na T and W

\square In the ratio technique, Na number density is cancelled out. So we have two ratios R_{T} and R_{W} that are independent of Na density but both dependent on T and W.
\square The idea is to derive temperature and radial wind from these two ratios first, and then derive Na number density using computed temperature and wind at each altitude bin.
\square To derive T and W from R_{T} and R_{W}, the basic idea is to use look-up table or iteration methods to derive them: (1) compute R_{T} and R_{W} from physics point-of-view to generate the table or calibration curves, (2) compute R_{T} and R_{W} from actual photon counts, (3) check the table or calibration curves to find the corresponding T and W. (4) If R_{T} and R_{W} are out of range, then set to nominal T and W .
\square However, because the Na extinction coefficient is involved, the upper bins are related to lower bins, and extinction coefficient is related to Na density and effective cross-section. The solution is to start from the bottom of the Na layer.

Main Process Procedure

\square Compute Doppler calibration curves from physics

$$
\sigma_{\mathrm{eff}}(\nu)=\frac{1}{\sqrt{2 \pi} \sigma_{\mathrm{e}}} \frac{e^{2} f}{4 \epsilon_{0} m_{\mathrm{e}} c} \sum_{n=1}^{6} A_{n} \exp \left(-\frac{\left[\nu_{n}-\nu\left(1-\frac{v_{\mathrm{R}}}{c}\right)\right]^{2}}{2 \sigma_{\mathrm{e}}^{2}}\right)
$$

Main Process Procedure

Compute actual ratios R_{T} and R_{W} from photon counts
\square Look up these two ratios on the calibration curves to infer the corresponding Temperature and Wind from isoline/isogram.

Constituent Density

\square Normalized Photon Count to the density estimation

Temperature and wind dependent
\rightarrow we need to estimate the temperature and wind first in order to estimate the density
\square The effective cross-section

$$
\sigma_{\mathrm{eff}}(\nu)=\frac{1}{\sqrt{2 \pi} \sigma_{\mathrm{e}}} \frac{e^{2} f}{4 \epsilon_{0} m_{\mathrm{e}} c} \sum_{n=1}^{6} A_{n} \exp \left(-\frac{\left[\nu_{n}-\nu\left(1-\frac{v_{\mathrm{R}}}{c}\right)\right]^{2}}{2 \sigma_{\mathrm{e}}^{2}}\right)
$$

Load Atmosphere n_{R}, T, P Profiles from MSISOO

Start from Na layer bottom

$$
T_{c}\left(z=z_{b}\right)=1
$$

Calculate Nnorm ($\mathrm{z}=\mathrm{z}_{\mathrm{b}}$) from photon counts and MSIS number density for each freq

$$
N_{\text {Norm }}(\lambda, z)=\frac{N_{S}(\lambda, z)-N_{B}}{N_{S}\left(\lambda, z_{R}\right)-N_{B}} \frac{z^{2}}{z_{R}{ }^{2}} \frac{1}{T_{c}^{2}(\lambda, z)}-\frac{n_{R}(z)}{n_{R}\left(z_{R}\right)}
$$

Calculate R_{T} and R_{W} from $N_{\text {Norm }}$

Main Process

Create look-up table or calibration curves From physics

$$
\begin{aligned}
& R_{T}=\frac{\sigma_{e f f}\left(f_{+}, z\right)+\sigma_{e f f}\left(f_{-}, z\right)}{\sigma_{e f f}\left(f_{a}, z\right)} \\
& R_{W}=\frac{\sigma_{e f f}\left(f_{+}, z\right)-\sigma_{e f f}\left(f_{-}, z\right)}{\sigma_{e f f}\left(f_{a}, z\right)}
\end{aligned}
$$

Look-up Table

 CalibrationFind T and W
from the Table

Calculate Na density $\mathrm{n}_{\mathrm{c}}(\mathrm{z})$

Derivation of T_{C} (Transmission Caused by Constituent Extinction)

$\square T_{C}$ (caused by constituent absorption) can be derived from

$$
\begin{gathered}
T_{c}(\lambda, z)=\exp \left(-\int_{z_{\text {bottom }}}^{z} \sigma_{\text {eff }}(\lambda, z) n_{c}(z) \mathrm{d} z\right)=\exp \left(-\sum_{z_{\text {bottom }}}^{z} \sigma_{\text {eff }}(\lambda, z) n_{c}(z) \Delta z\right) \\
+ \\
n_{c}(z)=\left[\frac{N_{S}(\lambda, z)-N_{B}}{N_{R}\left(\lambda, z_{R}\right)-N_{B}} \cdot \frac{z^{2}}{z_{R}^{2}} \frac{1}{T_{c}^{2}(\lambda, z)}-\frac{n_{R}(z)}{n_{R}\left(z_{R}\right)}\right] \cdot \frac{4 \pi \sigma_{R}(\pi, \lambda) n_{R}\left(z_{R}\right)}{\sigma_{e f f}(\lambda, z) R_{B}(\lambda)} \\
\hline
\end{gathered}
$$

$$
\sigma_{e}=\sqrt{\sigma_{D}^{2}+\sigma_{L}^{2}}
$$

$$
T_{c}(\lambda, z)=\exp \left(-\sum_{z_{\text {bottom }}}^{z}\left[\frac{N_{S}(\lambda, z)-N_{B}}{N_{R}\left(\lambda, z_{R}\right)-N_{B}} \cdot \frac{z^{2}}{z_{R}^{2}} \frac{1}{T_{c}^{2}(\lambda, z)}-\frac{n_{R}(z)}{n_{R}\left(z_{R}\right)}\right] \cdot \frac{4 \pi \sigma_{R}(\pi, \lambda) n_{R}\left(z_{R}\right)}{R_{B}(\lambda)} \Delta z\right)
$$

A Step in the Main Process: Estimating Transmission (T_{C})

Main Process Step 1: Starting Point

1. Set transmission $\left(T_{c}\right)$ at the bottom of Na layer to be 1
2. Calculate the normalized photon count for each frequency

$$
N_{\text {Norm }}(\lambda, z)=\frac{N_{S}(\lambda, z)-N_{B}}{N_{S}\left(\lambda, z_{R}\right)-N_{B}} \frac{z^{2}}{z_{R}^{2}} \frac{1}{T_{c}^{2}(\lambda, z)}-\frac{n_{R}(z)}{n_{R}\left(z_{R}\right)}
$$

3. Take ratios R_{T} and R_{W} from normalized photon counts

$$
R_{T}=\frac{N_{\text {Norm }}\left(f_{+}, z\right)+N_{\text {Norm }}\left(f_{-}, z\right)}{N_{\text {Norm }}\left(f_{a}, z\right)}
$$

$$
R_{W}=\frac{N_{\text {Norm }}\left(f_{+}, z\right)-N_{\text {Norm }}\left(f_{-}, z\right)}{N_{\text {Norm }}\left(f_{a}, z\right)}
$$

4. Estimate the temperature and wind using the calibration curves computed from physics

Main Process Step 2:
 Bin-by-Bin Procedure

5. Calculate the effective cross section using temperature and wind derived
6. Using the effective cross-section and $T_{C}=1$ (at the bottom), calculate the Na density.

$$
n_{c}(z)=\left[\frac{N_{S}(\lambda, z)-N_{B}}{N_{R}\left(\lambda, z_{R}\right)-N_{B}} \cdot \frac{z^{2}}{z_{R}^{2}} \frac{1}{T_{c}^{2}(\lambda, z)}-\frac{n_{R}(z)}{n_{R}\left(z_{R}\right)}\right] \cdot \frac{4 \pi \sigma_{R}(\pi, \lambda) n_{R}\left(z_{R}\right)}{\sigma_{e f f}(\lambda) R_{B}(\lambda)}
$$

7. From effective cross-section and Na density, calculate the transmission T_{C} for the next bin.

$$
T_{c}(\lambda, z)=\exp \left(-\int_{z_{\text {bottom }}}^{z} \sigma_{\text {eff }}(\lambda, z) n_{c}(z) \mathrm{d} z\right)=\exp \left(-\sum_{z_{\text {bottom }}}^{z} \sigma_{\text {eff }}(\lambda, z) n_{c}(z) \Delta z\right)
$$

Na Densita Denination

\square The Na density can be inferred from the peak freq signal

$$
n_{N a}(z)=\frac{N_{\text {norm }}\left(f_{a}, z\right)}{\sigma_{a}} 4 \pi n_{R}\left(z_{R}\right) \sigma_{R}=\frac{N_{\text {norm }}\left(f_{a}, z\right)}{\sigma_{a}} 4 \pi \times 2.938 \times 10^{-32} \frac{P\left(z_{R}\right)}{T\left(z_{R}\right)} \cdot \frac{1}{\lambda^{4.0117}}
$$

\square The Na density can also be inferred from a weighted average of all three frequency signals.
\square The weighted effective cross-section is

$$
\sigma_{e f f_{-} w g t}=\sigma_{a}+\alpha \sigma_{+}+\beta \sigma_{-}
$$

where α and β are chosen so that

$$
\frac{\partial \sigma_{\text {eff_wgt }}}{\partial T}=0 ; \quad \frac{\partial \sigma_{\text {eff_wgt }}}{\partial \mathrm{v}_{R}}=0
$$

\square The Na density is then calculated by

$$
n_{N a}(z)=4 \pi n_{R}\left(z_{R}\right) \sigma_{R} \frac{N_{\text {norm }}\left(f_{a}, z\right)+\alpha N_{\text {norm }}\left(f_{+}, z\right)+\beta N_{\text {norm }}\left(f_{-}, z\right)}{\sigma_{a}+\alpha \sigma_{+}+\beta \sigma_{-}}
$$

Process Procedure for β of PMC

Load Atmosphere n_{R}, T, P Profiles from MSISOO

$$
R=\frac{\left[N_{S}(z)-N_{B}\right] \cdot z^{2}}{\left[N_{S}\left(z_{R N}\right)-N_{B}\right] \cdot z_{R N}^{2}} \cdot \frac{n_{R}\left(z_{R N}\right)}{n_{R}(z)}
$$

Calculate $R(z)$ and $\beta(z)$

$$
\beta_{P M C}(z)=\left[\frac{\left[N_{S}(z)-N_{B}\right] \cdot z^{2}}{\left[N_{S}\left(z_{R N}\right)-N_{B}\right] \cdot z_{R N}^{2}}-\frac{n_{R}(z)}{n_{R}\left(z_{R N}\right)}\right] \cdot \beta_{R}\left(z_{R N}\right)
$$

Smooth $R(z)$ and $\beta(z)$ By Hamming Window $\mathrm{FWHM}=250 \mathrm{~m}$

Calculate $z_{c}, \sigma_{r m s^{\prime}} \beta_{\text {total }}$

$$
\sigma_{r m s}=\sqrt{\frac{\sum_{i}\left(z_{i}-z_{c}\right)^{2} \beta_{P M C}\left(z_{i}\right)}{\sum_{i} \beta_{P M C}\left(z_{i}\right)}} \quad \beta_{\text {total }}=\int \beta_{P M C}(z) d z
$$

Example Result: South Pole PMC

Process Procedure for n_{c}

\square Computation of effective cross-section
(concerning laser shape, assuming nominal T and W)
\square Spatial resolution - binning or smoothing
\square temporal resolution - integration or smoothing
-- in order to improve SNR
\square Transmission T_{C} (extinction coefficient)
\square Calculate density
\square Calculate abundance, peak altitude, etc.

To Improve SNR

\square In order to improve signal-to-noise ratio (SNR), we have to sacrifice spatial and/or temporal resolutions.
\square Spatial resolution

- integration (binning)
- smoothing
\square temporal resolution
- integration
- smoothing

Analysis of Error Caused by Photon Noise

\square Use the temperature error derivation for 3-freq Na lidar as an example to explain the error analysis procedure using a differentiation method. For 3-frequency technique, we have the temperature ratio

$$
R_{T}=\frac{\sigma_{e f f}\left(f_{+}\right)+\sigma_{e f f}\left(f_{-}\right)}{\sigma_{e f f}\left(f_{a}\right)}=\frac{N\left(f_{+}\right)+N\left(f_{-}\right)}{N\left(f_{a}\right)}
$$

Temperature error caused by photon noise is given by (1st order apprx.)

$$
\Delta T=\frac{\partial T}{\partial R_{T}} \Delta R_{T}=\frac{R_{T}}{\partial R_{T} / \partial T} \frac{\Delta R_{T}}{R_{T}}
$$

\square Define the temperature sensitivity as

$$
S_{T}=\frac{\partial R_{T} / \partial T}{R_{T}}
$$

We have

$$
\Delta T=\frac{\partial T}{\partial R_{T}} \Delta R_{T}=\frac{R_{T}}{\partial R_{T} / \partial T} \frac{\Delta R_{T}}{R_{T}}=\frac{1}{S_{T}} \frac{\Delta R_{T}}{R_{T}}
$$

Error Coefficient and $\Delta R_{T} / R_{T}$

\square The temperature error coefficient can be derived numerically

$$
\frac{R_{T}}{\partial R_{T} / \partial T}=\frac{R_{T}}{\left[R_{T}(T+\delta T)-R_{T}(T)\right] / \delta T}
$$

\square We can derive the error of 3-freq R_{T} caused by photon noise

$$
\frac{\Delta R_{T}}{R_{T}}=\frac{\left(1+\frac{1}{R_{T}}\right)^{1 / 2}}{\left(N_{f_{a}}\right)^{1 / 2}}\left[1+\frac{B}{N_{f_{a}}} \frac{\left(1+\frac{2}{R_{T}^{2}}\right.}{\left(1+\frac{1}{R_{T}}\right)}\right]^{1 / 2}
$$

Hint: An example for 2-freq ratio technique, $R_{T}=N_{f c} / N_{f a}$

$$
\begin{aligned}
\frac{\Delta R_{T}}{R_{T}} & =\frac{\Delta N_{f_{c}}}{N_{f_{c}}}-\frac{\Delta N_{f_{a}}}{N_{f_{a}}} \\
\left(\frac{\Delta R_{T}}{R_{T}}\right)_{r m s} & =\sqrt{\left(\frac{\Delta N_{f_{c}}}{N_{f_{c}}}-\frac{\Delta N_{f_{a}}}{N_{f_{a}}}\right)^{2}}=\sqrt{\left(\frac{\left.\Delta N_{f_{c}}\right)^{2}}{\left(\frac{\Delta f_{c}}{N_{f_{c}}}\right)^{2}}+\overline{\left(\frac{\Delta N_{f_{a}}}{N_{f_{a}}}\right)^{2}}\right.} N_{f_{c}}+B, \overline{\left(\Delta N_{f_{a}}\right)^{2}}=N_{f_{a}}+B
\end{aligned}
$$

Other Possible Errors or Biases

1) Laser freq locking error, 2) pulsed laser freq chirp, 3) laser line shape and linewidth, 4) Hanle effect, 5) metal layer saturation, etc. ...

Summary

\square The pre-process and profile-process are to convert the raw photon counts to corrected and normalized photon counts in consideration of hardware properties and limitations.
\square The main process of T and V_{R} is to convert the normalized photon counts to T and V_{R} through iteration or looking-up table methods.
\square The main process of n_{c} or β is to convert the normalized photon counts to number density or volume backscatter coefficient, in combination with prior acquired knowledge or model knowledge of certain atmosphere information or atomic/molecular spectroscopy.
\square Data inversion procedure consists of the following processes:
(1) pre- and profile-process,
(2) process of T and V_{R},
(3) process of n_{c} and β, etc.

