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Lecture 27. Wind Lidar
New Development & Resonance DDL

J Multi-Frequency Edge-Filter DDL

-- Na-DEMOF and I, Filter-based

J New Developments of DDL Using Optical Interferometer
—- Optical Auto-covariance Wind Lidar (OAWL)

J Resonance DDL

-- Na, Fe, and K Doppler Lidars

J Comparison of Wind Techniques

J Summary
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Na/K Double-Edge Magneto-Optic Filter DDL
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L With a 3-freq Na or K Doppler lidar, it is possible to measure wind,
temperature, and aerosol simultaneously with a Na-DEMOF or K-DEMOF.

[Huang, Chu, Williams, et al., Optics Letters, 34, pp.199, 2009]2
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# Field Demonstration of Simultaneous Wind and

Temperature Measurements (10-45 km) with

Na-DEMOF and 3-Frequency Na Lidar
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[Huang, Chu, et al., Optics
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Doppler Rayleigh Iodine Spectrometer-Based
Doppler Rayleigh/Mie/Raman Lidar to Profile
Wind and Temperature up to 80 km
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Fig. 2. Measured transmission spectrum of iodine for two cells of
different length at different temperatures: 38 °C (blue L38: 15cm
long), 57 °C (green S57: 10 cm long). For reference, the Doppler
broadened Cabannes line for 230K is shown. The wavelength of
the seed laser is indicated by a dotted vertical line.

Currently the data retrieval is for molecular scattering (Rayleigh) only, but
since rotational and vibrational Raman as well as multiple wavelength
aerosol scatterings are also detected, in principle aerosol and temperature
information can be derived, so can be used fo derive Doppler wind more
precisely in the aerosol-loaded regions.

[Baumgarten, Atmos. Meas. Tech., 3, 1509-1518, 2010]  °
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Doppler Rayleigh Iodine Spectrometer-Based
Doppler Rayleigh/Mie/Raman Lidar to Profile
Wind and Temperature up to 80 km
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Fig. 4. Polychromatic detection system of the ALOMAR RMR lidar with emphasis on 532 nm channels. Light from the telescopes (NWT
or SET) is split by wavelength and intensity. Light for the DoRIS system is detected by the channel groups 532-Sg and 532-Sg, . The system
can be operated during day using a double etalon system (bandpass ~4 pm).

[Baumgarten, Atmos. Meas. Tech., 3, 1509-1518, 2010] 6
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Doppler Rayleigh Iodine Spectrometer-Based

Doppler Rayleigh/Mie/Raman Lidar to Profile
Wind and Temperature up to 80 km
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Fig. 9. Temperature, vertical and meridional wind on 17 January
2009 between 17:00 and 19:00 UT. ECMWEF data from 18:00 UT
(solid) and 12:00,24:00 UT (dashed) are shown. Simultaneous ob-
servations by the collocated Meteor radar are shown. The gray
area indicates altitudes with aerosol contribution as measured by
the lidar.
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Fig. 10. Temperature and horizontal wind on 23 January 2009 be-

Temperatures are derived from the
integration technique combining
Rayleigh and VR Raman scatterings.

At=2 h, AV s = 0.6 m/s @ 49 km, 10 m/s @ 80 km
PL=14W@ 532 nm, Djescope = 1.8 M

[Baumgarten, Atmos. Meas. Tech., 3, 1509-1518, 2010]
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Considerations for DDL

O Multiple-frequency edge-filter-based DDL provides a new idea of
measuring wind and temperature simultaneously with DDL.

1 The combination of Rayleigh Doppler wind with Rayleigh integration
temperature provides another idea of measuring wind and temperature
simultaneous with DDL.

[ Adding Raman channels (both vibrational-rotational and pure-rotational)
and independent aerosol channels will help to retrieval aerosol information
(B and «), so enabling the wind retrieval in the aerosol-loaded regions.

J Comparing to Na or K-DEMOF, the advantage of iodine filter is the
availability of high-power laser at 532 nm. By integrating our multiple-
frequency idea formed from Na-DEMOF investigation to the iodine-filter
lidar, it may be even more powerful.

1 Nevertheless, all edge-filter DDLs suffer significant signal loss. This is
because the peak of the return signals is cut or attenuated in order tfo
have sufficiently high sensitivity to wind. Thats why people look into other
possibilities to do DDL.
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New Development of DDL Recently
J Michelson interferometer-based DDL by Ball Aerospace
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New Development of DDL Recently

O Mach-Zehnder interferometer-based DDL by John A. Smith (UCB)

[Born and Wolf,
Principles of Optics]

A Mach-Zehnder interferometer (MZI) consists of
two (usually 50/50) beam splitters and two high
reflectance mirrors in a fixed geometry. The optical
path difference between each leg is related fo the
free spectral range and therefore analogous fo the

spacing of an etalon.
>
Iﬁg1<:§§>
An alfernative design

used in Doppler wind
lidars
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Resonance Fluorescence DDL

J Atomic Fe, Na, K, etc. absorption lines undergo Doppler
frequency shift and Doppler linewidth broadening, so acting as
an frequency analyzer or frequency discriminator in the
atmosphere - given by mother Nature!

J Consequently, the lidar receiver is broadband so can receive
all return signal photons. Plus the high effective absorption and
scattering cross-sections (at least 14 orders of magnitude higher
than Rayleigh scattering), resonance fluorescence DDL provides
much higher signal-tfo-noise ratios than non-resonance DDL in
the upper atmosphere where quenching isnt an issue.

J As a price we have to pay, the effective cross-section of
resonance absorption and fluorescence as well as laser
frequency and line shape must be known to a great accuracy
and precision in order for resonance DDL to derive unbiased
wind and temperature.



LIDAR REMOTE SENSING

PROF. XINZHAO CHU

CU-BOULDER, FALL 2014

Na Atomic Energy Levels
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Doppler' Effect in Na D, Line

Resonance Fluorescence
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JC ppler' lel'l'ed Na Spectr'oscopy

J Doppler-broadened Na absorption cross-section is
approximated as a Gaussian with rms width o,

6 ol 2
(V)= 3 4, expf - SO
2nop 4egm,C 207

J Assume the laser lineshape is a Gaussian with rms width o,

J The effective cross-section is the convolution of the atomic
absorption cross-section and the laser lineshape

2 6 o1 2
Gop (v) = 1 e” f E A exp|- [v, —v(d 2VR /c)]
\V2ro, 4egm,C 2 20,
kgT
where o, = \/0% +o7 and ©p= MB;%

The frequency discriminator/analyzer is in the atmosphere!
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*®How Does Ratio Technique Work?
J Compute Doppler calibration curves from physics

[ Look up these two ratios on the calibration curves to infer the
corresponding Temperature and Wind from isoline/isogram.
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Fe Doppler' lear' Prmcuples
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MRI Fe Doppler Lidar

[Chu et al., ILRC, 2010]
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Mobile MRI Fe Doppler Lidar
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identification obtained with the MRI Fe Doppler lidar.
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Containerized MRI lidar - hard fo take photos
Come to Table Mountain to see it by your own eyes! 19



LIDAR REMOTE SENSING

PROF. XINZHAO CHU CU-BOULDER, FALL 2014

27166.819 ¢cm™

26874.549 cm™

26140 cm™

4 -1
25900 cm

372nm 374nm

386nm

389nm

415932 cm™

5 -1
3d6482 AE=L416cm

0.000 cm™

IAP Scanning Fe Doppler Lidar

summer student

J IAP pulsed alexandrite ring laser was tuned from 770 nm tfo
772 nm, and then frequency doubled to probe the 386-nm Fe
absorption line for temperature measurements with scanning
technique developed for K Doppler lidar.

0 Superior performance over K lidar due to Fe abundancé, ...



2014

L R S P X C CU-B ,F

Challenges in Resonance DDL

[ 1) Atomic absorption cross-section: isotope shifts, Hanle effects, atomic
layer saturation and optical pumping effects

[ 2) Laser absolute frequency calibration: frequency chirp and broadening

1 3) Laser lineshape: Convolution of atomic absorption with laser lineshape

[ Determination of o, (v): QM calculation, convolution of Gaussian with
Lorentzian, Hanle effect, Na layer saturation, and optical pumping effect.

Hanle effect modified A :

20 T T T TTTT] T T T T TTTT T TT 100

5,5 2,14,5,1 —

5 5.48, 2,15.64, 5, 0.98
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d Isotope shifts: measured [
independently, or scanning fo more O ST S v E—

frequencies to infer from atmosphere. Energy areadonsiy (num?)
Na Layer Saturation:
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Na Atomic Parameters

Table 5.1 Parameters of the Na D; and Dy Transition Lines

Central Transition Radiative Oscillator
Transition Wavelength Probability Lifetime Strength
Line (nm) (108s™ 1) (nsec) fic
D; ®°Py 3—?S10)  589.7558 0.614 16.29 0.320
Dy (*P3 9—2S10)  589.1583 0.616 16.23 0.641
Group 2Sy/0 2Ps/o Offset (GHz) Relative Line
Strength?®
Day, F=1 F=2 1.0911 5/32
F=1 1.0566 5/32
F=0 1.0408 2/32
Do, F=2 F=3 —0.6216 14/32
F=2 —0.6806 5/32
F=1 —0.7150 1/32

Doppler-Free Saturation—Absorption Features of the Na Dy Line

fa (MHz) fe (MHz) fr (MHz) f+ (MHz) - (MHz)
—651.4 187.8 1067.8 —21.4 —1281.4

“Relative line strengths are in the absence of a magnetic field or the spatial average.
When Hanle effect is considered in the atmosphere, the relative line strengths will be
modified depending on the geomagnetic field and the laser polarization.

22
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Comparison of Wind

Techniques

Technique

Lidars

Applications

Doppler Wind Technique
(Direct Detection or
Coherent Detection): wind
dependence of Doppler
frequency shift

(1 time Doppler shift for
single absorption or emission
process)

(2 times Doppler shift for
Mie and Rayleigh scattering)

Resonance Fluorescence Doppler Lidar:
Doppler frequency shift and broadening of
resonance fluorescence absorption cross-
section (scan and ratio techniques)

Mesosphere and Lower
Thermosphere temperature and
wind (75-120 km); possible in
thermosphere with other species

Rayleigh/Mie Direct Detection Doppler Lidar :
Doppler frequency shift of molecular and/or
aerosol scattering using edge filters (absorption
lines or etalons) or fringe imaging or scanning
FPI or Michelson Interferometer

Lower mesosphere, stratosphere
and troposphere wind (up to
50-60-70 km if there are enough

photon counts)

Coherent Detection Doppler Lidar: Doppler
frequency shift of aerosol scattering using
heterodyne detection technique

Troposphere wind, especially in
boundary layers (up to 15 km),
where aerosols are abundant

Direct Motion Detection
Technique: derivative of
displacement (the definition
of velocity)

(direct application of velocity
definition or cross-correlation
coefficient)

High-Spectral-Resolution Lidar: tracking
aerosol / cloud motion through time

Troposphere wind, where aerosols
and clouds are abundant

(Scanning) Aerosol Lidar: tracking aerosol
motion through time

Troposphere wind, where aerosols
and clouds are abundant

Laser Time-of-Flight Velocimeter: measuring
time-of-flight of aerosol across two focused
and parallel laser beams

Within the first km range,
laboratory, machine shop, etc.

Laser Doppler Velocimeter: measuring the
frequency of aerosol scattering across the
interference fringes of two crossed laser beams

Within the boundary layers, wind
tunnel, production facility, machine
shop, fluid mechanics research, etc
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Summdr‘y

[ Direct detection Doppler lidar uses atomic/molecular absorption lines,
the edge filters, or fringe-imaging techniques to discriminate or analyze
the of the return lidar signals (Doppler shifted and/or broadened).
Potentially, DDL can measure both wind and temperature if sufficient
spectral information is provided or inquired.

J For non-resonance DDL, a major issue is how to improve the signal
level or collection efficiency. New developments based on various
interferometers are under the way.

1 For atmospheric science study, especially for waves coupling from
lower fo upper atmosphere, DDLs have very high potentials for the
future, especially the combination of resonance DDL in MLT region with
non-resonance DDL in the troposphere, stratosphere and lower
mesosphere, we may be able to profile the wind and temperature from
ground all the way up to 170 km. This will be a breakthrough for
atmospheric science community.

Please read our textbook Chapter 7 for direct-detection Doppler lidar
and for coherent-detection Doppler lidar.
Please read our textbook Chapter 5 for resonance DDL.

24




