Optical Remote Sensing with DIfferential Absorption Lidar (DIAL)

Part 2: System Design and Applications

Christoph Senff

CIRES, University of Colorado & NOAA/ESRL/CSD/Atmospheric Remote Sensing Group

http://www.esrl.noaa.gov/csd/groups/csd3/

Guest lecture for ASEN-6519 Lidar Remote Sensing CU Boulder

October 10, 2012

Outline

- DIAL system components
- DIAL instruments at NOAA/ESRL
- Applications of airborne ozone DIAL

DIAL system components: Transmitter (1)

Narrow absorption line

Broad absorption feature

- Δλ ≈ 50 pm
- No correction for differential backscatter or extinction needed
- Transmit laser needs to be tunable
- High frequency stability, narrow bandwidth, high spectral purity

- Δλ =10 nm
- Correction for differential backscatter or extinction necessary
- Fixed wavelength lasers OK
- High frequency stability, narrow bandwidth, high spectral purity not needed

DIAL system components: Transmitter (2)

- □ High laser power (high pulse energy or lower pulse energy & high rep rate)
- □ Tunable laser or appropriate fixed frequencies

Species	Laser transmitter	Wavelengths
O ₃	4x Nd:YAG / Excimer + Raman shift	Fixed: 266 – 359 nm
	OPO, CeLiCAF, 3x Ti:Sapphire	Tunable: 280 – 320 nm
H ₂ O	Ti:Sapphire, Alexandrite, OPO, Fiber laser	720 – 940 nm, 1.5 μm
CH ₄	OPO	1.67 µm, 3.3 µm
CO ₂	Fiber laser, OPO, Tm:Ho:YLF	1.57 µm, 2.05 µm
VOCS	Dye lasers	Mid-IR @ several µm
NH ₃	Dye laser, CO ₂ laser	208 nm, 9 – 10 µm

OPO = Optical Parametric Oscillator

□ Large telescope

- □ Narrow field of view to suppress background light
- Combination of near and far channels to compress large dynamic range

DIALs at NOAA/ESRL/CSD: Water Vapor

CODI = COmpact DIAL (prototype of small, autonomous H_2O DIAL system)

wavelength	823 nm
output pulse energy	~0.15 μJ
pulse duration	600 ns
pulse repetition freq.	8 – 10 kHz
telescope diameter	34 cm
field-of-view	180 μRad

DIALs at NOAA/ESRL/CSD: Ozone

TOPAZ = Tunable Optical Profiler of Aerosol and oZone

- > Tunable, all-solid state, compact O_3 DIAL
- > Replaced previous fixed-wavelength O_3 lidar in 2006
- Size & weight were reduced significantly

TOPAZ Specifications			
Wavelengths	3		
Wavelength tuning range	285-310 nm		
Pulse energy	0.2-0.8 mJ/pulse		
Pulse rate	1 kHz with pulse-to-pulse tuning capability		
Minimum/maximum range	0.3 km / 5 km		
Eye-safe range	~150 m		
System weight	~800 lbs (including chiller and control electronics)		
Output	Ozone and aerosol backscatter profiles		
Vertical/horizontal resolution (O_3)	90 m / 600 m		
Precision (O ₃)	3 - 15 ppbv		

TOPAZ Ozone Lidar

2006 – 2011: Airborne deployments on NOAA Twin Otter

2012: Conversion to truck-based, scanning instrument

TOPAZ is a tunable, multi-wavelength DIAL system

Advantages of tunability:

- Wavelengths can be optimized for given atmospheric ozone loading
- Minimize interference from other trace gases, e.g. SO₂

Advantages of multi-wavelength capability:

- Allows simultaneous measurement of 2 species (O₃ & SO₂)
- Dual-DIAL application to minimize uncertainties due to aerosol backscatter and extinction corrections

Ozone DIAL Application: Regional Air Quality

Ozone non-attainment areas in the US

Area is in non-attainment if 3-year average of the annual 4th highest daily maximum 8-hr ozone concentration exceeds 75 ppbv.

Ozone lidar science objectives

3-d distribution of ozone

- Horizontal and vertical transport of ozone on local and regional scales
- Validation of air quality forecasting models

TexAQS 2000 - Local Transport: Sea-breeze re-circulation of pollutants near Houston, TX

Air Quality forecast model comparison with O₃ DIAL

AQ model prediction

TexAQS 2000 & 2006 - Regional Transport: Estimating ozone exported from Houston

Horizontal ozone flux and impact on regional air quality

An ozone flux of $3.2 \cdot 10^{26}$ molec s⁻¹ emitted over 12 hours is equivalent to a 10 ppbv increase in ozone over a ~ 40,000 km² area, assuming a 1.5-km deep mixed layer.

Front Range Air Quality Study 2008: Transport of O_3 into and over the mountains

3-d distribution of O₃ from TOPAZ lidar

Front Range Air Quality Study 2008: Comparison of O_3 DIAL measurements with air quality model predictions

TOPAZ lidar measurement

WRF-FLEXPART model results

CalNex 2010: Export of O_3 from the Los Angeles Basin

TOPAZ lidar:

Ozone profiles

U of Leeds Doppler lidar:

Wind speed & direction profiles

Pollution export pathways from the LA Basin

2 July 2010 O_3 distribution over L A Basin and Mojave Desert

2 July 2010: Transport thru Banning Pass and along/over San Bernardino Mtns

2 July 2010: Transport thru Banning Pass

2 July 2010: Transport along/over San Bernardino Mtns

DIAL transmitters (slide 4)

Fix, A., M. Wirth, A. Meister, G. Ehret, M. Pesch, and D. Weidauer, 2002: Tunable Ultraviolet Optical Parametric Oscillator for Differential Absorption Lidar Measurements of Tropospheric Ozone, *Appl. Phys. B*, **75**, 153 – 163.

Poberaj, G., A. Fix, A. Assion, M. Wirth, C. Kiemle, G. Ehret, 2002: Airborne All-solid-state DIAL for Water Vapour Measurements in the Tropopause Region: System Description and Assessment of Accuracy, *Appl. Phys. B*, **75**, 165 – 172.

Gibert, F. P. H. Flamant, D. Bruneau, and C. Loth, 2006: Two-micrometer Heterodyne Differential Absorption Lidar Measurements of the Atmospheric CO_2 Mixing Ratio in the Boundary Layer, *Appl. Opt.*, **45**, 4448-4458.

NOAA/ESRL/CSD DIAL systems (slides 6 - 10)

Machol, J. L., T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, 2004: Preliminary Measurements with an Automated Compact Differential Absorption Lidar for Profiling Water Vapor. *Appl. Opt.*, **43**, 3110-3121.
Alvarez II, R. J., C. J. Senff, A. O. Langford, A. M. Weickmann, D. C. Law, J. L. Machol, D. A. Merritt, R. D. Marchbanks, S. P. Sandberg, W. A. Brewer, R. M. Hardesty, R. M. Banta, 2011: Development and application of a compact, tunable, solid-state airborne ozone lidar system for boundary layer profiling, *J. Atmos. Oceanic Technol.*, doi: 10.1175/JTECH-D-10-05044.1.

Ozone DIAL applications (slides 11-25)

Senff, C. J., R. J. Alvarez, II, R. M. Hardesty, R. M. Banta, and A. O. Langford (2010), Airborne lidar measurements of ozone flux downwind of Houston and Dallas, J. Geophys. Res., 115, D20307, doi:10.1029/2009JD013689.

Langford, A. O., C. J. Senff, R. J. Alvarez II, R. M. Banta, and R. M. Hardesty, 2010: Long-range transport of ozone from the Los Angeles Basin: A case study, *Geophys. Res. Lett.*, 37, L06807, doi:10.1029/2010GL042507.

Banta, R. M., C. J. Senff, J. Nielsen-Gammon, L. S. Darby, T. B. Ryerson, R. J. Alvarez, S. P. Sandberg, E. J. Williams, and M. Trainer, 2005, A Bad Air Day in Houston, *Bull. Amer. Meteo. Soc.*, 657-669.