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Le‘rur'e 17. Temperature Lidar (6)
Integration Technique

] Doppler effects in absorption/backscatter coefficient
J Integration technique for temperature

» Searchlight integration lidar

» Rayleigh integration temperature lidar

» Vibrational Raman integration lidar

> Falling sphere temperature measurement
 Rayleigh/Raman lidar instrumentation

J Summary
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Doppler Broadening in Absorption
and Backscatter Coefficients

1 It is accurate to say that absorption coefficient and backscatter
coefficient experience Doppler broadening. However, only statistically
averaged absorption and effective cross sections experience Doppler
broadening.

O Absorption and effective cross sections for single atom/molecule
experience Doppler shift but not Doppler broadening.

1 Absorption and total backscatter coefficients are given by

g.
Qi = Oy (N; _g_lNk)zGikNi Br =04 RN,
k

 Absorption coefficient «,,, total backscatter coefficient B;
J Absorption cross section 0, effective backscatter cross section O
O Population (number density) N. and N,
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Doppler Shift in Absorption and
Backscatter Cross Sections

O In principle, 0, is the cross section for single atom/molecule, so o, (w)

has a Lorentzian shape L(w, V)
Oy (w,v) =0,L(w,v)

where L(w, v) is a Lorentzian shape and function of velocity v.

[ Single atom absorption/effective cross section experiences Doppler
shiff, but it does NOT experience Doppler broadening. Single atom cross-
section has a Lorentzian shape with narrow natural linewidth, resulted
from the finite radiative lifetime of the excited states of atom/molecule.

[ N, can be written as the population distribution along velocity N,(v),
which is a Gaussian shape under Maxwellian distribution:

Ni (V,VR) = NOG(V,VR)

J Doppler broadening comes from the fact that different atoms have
different velocities in the atmosphere, so causing different Doppler shifts.
Averaging over all atoms, it leads to Doppler broadened Gaussian shape. 3
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Doppler Broadening on Absorption
and Backscatter Coefficients

d « is the convolution of a Lorentzian absorption cross section with a
Gaussian population distribution, which becomes a Voigt profile:

+00 +00
(@, V) = [ o (@yIN;(v.V)dv =0, N, [ Liwv)G(v,Vg)dy

1 But it is common to shift all distribution factors to the absorption
cross section, and then N, will only count the total population.

Oik,ave =00 fj:L(a)’V)G(V’VR )dv

[ In this case, it is now a cross section for the atom assembly (but
normalized to single molecule), not for single molecule anywhere.
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About Doppler-free Spectroscopy

1 In Doppler-free or sub-Doppler spectroscopy, we have to use single
atom/molecule absorption cross section that is Lorentzian with different
velocity distributions of population fo derive the sub-Doppler feature.

J How to defeat Doppler broadening to achieve Doppler-free
spectroscopy? — Choose a subgroup of atom velocity!

J Homogeneous broadening vs. inhomogeneous broadening
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Review of Doppler & Boltzmann

 Doppler effect and Boltzmann distribution are two effects that are
directly temperature-dependent. The Doppler technique and Boltzmann
technique are “straight-forward” in the sense of deriving temperature or
wind. However, the lidar architecture is usually complicated and
sophisticated, due to the high demands on frequency accuracy and
tuning, laser linewidth, and laser power etc.
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*  Integration Technique
3 The hydrostatic equation dP(z)=-p(z)g(z)dz

P(z)RT(z)
M(z)

d Integration from the upper altitude yields
p(zg) M(z) M(z)sz p(z)&(2) 4
p(z) M(zy) R Y2  p(z)

T(z) = atmospheric temperature profile (K)

P(z) = atmospheric pressure profile (mbar)

p(z) = atmospheric mass density profile (kg/m?3)
g(z) = gravitational acceleration (m/s?)

M(z) = mean molecular weight of the atmosphere,
i.e., molecular mass per mole (kg/mol)

R = universal gas constant (8.314472 J/mol/K)
z, = altitude of the upper level starting temperature (m)

J Ideal gas law P(z)=

T(z)=T(zy)
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Integration Technique

1 Atmosphere mass density p(z) vs number density n(z)
p(z)= n(z)M(z)/N,

where N, is the Avogadro constant: N, = 6.02214179x1023 mol-!
 Thus, we have

T(z)=T(zy)

mzy) M(Z)on n(z’)M(Z’)g(Z’)dZ,
n(z) R Yz n(z)M(z)

] Below 100 km for the well-mixed atmosphere, we have

M(z) = M(z’), so they cancel out in the integration
) MG o nE
mz) R “* n(z)

I(z)=T(z)

 Number density ratio (relative number density)

=> Temperature profile
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Error Analysis for Integration Tech

d The uncertainty is determined by the photon noise and
upper altitude temperature T(z,). The variance of derived
temperature is given by

T? T
Var[T(z)] ~ N ((ZZ)) +{VEII’[T(ZO) ((Z(())))}exp[ Q(ZO ]
R R

1 After 1-2 scale height, the error introduced by T(z,) is not
Important anymore. So the temperature error is mainly
determined by the photon counts and their noise.

1 The key is how to measure atmosphere (relative) density
with high accuracy and precision. Different approaches can
be applied, not limited to pulsed lidar technique.
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Fr'o Searchlight to Rayleigh, Raman & Falling Sphere

1 Integration temperature technique relies on the assumptions of
hydrostatic equilibrium equation and ideal gas law in atmosphere. It
involves integrating the atmosphere relative density profile downward
using a starting temperature at an upper altitude.

O It was pioneered by Elferman [1951, 1953, 1954] with cw searchlight to
measure stratospheric density thus deriving temperature in 1950s.

d The use of high power lasers with the Rayleigh lidar in the
atmosphere region (30-100 km) free of aerosol and fluorescence was
pioneered by Hauchecorne and Chanin [1980] (French group).

d In the lower atmosphere where aerosol scattering contaminates
Rayleigh scattering, Keckhut et al. [1990] developed Raman lidar to
measure atmosphere density from vibrational Raman scattering and then
derive temperature below 30 km.

[ Inflatable falling sphere provides high-precision atmosphere density
thus temperature measurements [Schmidlin et al., 1991].

10
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. Rayleigh, Raman & Falling Sphere using
Integration Temperature Technique
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Searchlight Integration Lidar
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Rayleigh Integration Lidar

J In the atmosphere region free of aerosols and
fluorescence, the lidar return photon counts are given by

Pr (L) At

Ns()\-,Z) =(

he/ A

)(ﬁRayleigh (2) AZ)

A
2
Z

T,”(A,2)N(AM)G(2))+Ng

where Rayleigh backscatter coefficient is proportional to

atmosphere number density

/3Ray

(Z) = GRay (ﬂ,)h)na(Z)

d Thus, ratio of normalized photon counts gives the
atmosphere relative density information

Ng(z)-Np z}

_ na(zl)

Ng(zp)-Np 73

na(ZZ)

Lidar Backscatter Ratio = Relative Density = Temperature
(at different altitudes)

(Rayleigh)

13
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¥ Sample of Temperature and Error
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532 nm

607 nm

d Raman shift amount is independent of incident laser wavelengths
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Fig. 9.1. Vibration-rotation energy levels of the N2 molecule, Raman transitions, and

resulting spectrum.
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¥ Raman In-l-egr'a'l'ion Lidar

d In the lower atmosphere region where aerosols present
Rayleigh scattering returns are contaminated by aerosol Mie
scattering, so cannot be used in the integration technique.

J However, Raman scattering only comes from molecules, thus,
free of aerosol influence. By detecting Raman scattering at a
different wavelength (e.g., 607 nm compared to 532 nm), Mie
and Rayleigh contamination are avoided.

Pp(Ap) At
hC/)\.L
A

2
Z

NS()‘”)\’L 7)) = )(GRaman()\‘L’)\"Z)nNz (Z)AZ)

T,(AL )T, (A2)M(ALN(A)G(2))+ Ng

X

Lidar Backscatter Ratio = Relative Density => Temperature
(at different altitudes) (Raman) 6
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Rayleigh-Raman Integration Lidar

[Keckhut et al., 1990] TEMPERATURE (KELVIN)
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Fig. 2. Lidar temperature profiles compared with the correspond-
ing CIRA 1988 model (dashed lines): (A) 09/11/88, 19H03 06H17
(B) 08/02/89, 18H26 06H13; (C) 14/04/89, 21H05 23H56.
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Inflafable Falling Sphere

Rocket transports a mefal
sphere to upper atmosphere
¢
After release the sphere
inflates to 1-m metal sphere
falling through atmosphere
¢
High-precision radar tracks
sphere position & acceleration

4

i Input to the equation of motion

of the falling sphere fo derive
atmosphere density

¢
Integration from top to derive
temperature from density data

[Schmidlin et al., JGR, 96(D12), 22673-22682, 1991] 18
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Falling Sphere Temperature
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Rayleigh/Raman Lidar Instrumentation

O Typical Rayleigh/Raman temperature lidar utilizes the
commercial Nd:YAG laser system as it provides robust laser
power and operation (usually broadband).

 Any (short wavelength) resonance fluorescence lidar, like Fe
Boltzmann lidar, also functions as a Rayleigh lidar in the
region free of aerosol and fluorescence (about 30-75 km).

J Rayleigh scattering is inversely proportion to the 4th
power of wavelength. So the shorter the wavelength, the
stronger the Rayleigh scattering, as long as atmosphere
absorption is not too strong.

J Operating in deep Fraunhofer lines will benefit daytime
operation to reduce the solar background.

 Availability and robustness of laser systems are another

consideration in lidar design. o
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Fe Boltzmann/Rayleigh Lidar

21
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Sample Results from
Fe Boltzmann/Rayleigh Lidar
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Figure 4. The observed weekly mean temperature structure of the atmosphere above South Pole (UISP-
02) plotted from 3 to 110 km. Polar nights (24 h darkness) occur between the white curves at 90°S and
between the black curves at 80°S. The vertical resolution is 500 m.
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@ Utah State University Rayleigh Lidar

[ Doubled Nd:YAG laser at 532 nm (630 mJ/pulse, 30 Hz)
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Upper and Lower Rayleigh Temperature Profiles For Scptcmtg;gr 24, 1994 Logan Utah
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Greenland Rayleigh Lidar
and Sample Results

i 1

April 10, 1996
03:30 to 04:30
Spatial resolution 1.92 km

Charjnel 2

ALTITUDE (km)

: i Channel 1

T T vy

llllll

30 T T i TrrTT i LI B | ; rrri :I LB i rea i T i 1T
200 210 220 230 240 250 260 270 280
TEMPERATURE (K)

Courtesy of Jeff Thayer

25



LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, FALL 2012

Greenland Rayleigh Lidar System
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Summary

J Integration technique relies on the assumptions of
hydrostatic equilibrium and ideal gas law in the atmosphere
intferested. It involves integrating the atmosphere relative
density profile downward using a starting temperature
(usually coming from a model or independent measurement)
at an upper altitude.

J The key is fo somehow measure the atmosphere relative
number density with high precision and unbiased.

J Integration technique started with cw searchlight in

1950s, dramatically enhanced by high-power pulsed Rayleigh
lidar in 1980s for region free of aerosols, further developed
by vibrational Raman lidar in 1990s for region with aerosols.

 Inflatable falling sphere released by rocket is another

perfect example for integration temperature technique.
27



