Lecture 16. Temperature Lidar (5) Boltzmann and Rotational Raman Techniques (Continued)

- Fe Boltzmann extended into the thermosphere
- N$_2^+$ Boltzmann temperature lidar
- Rotational Raman lidar
- Summary
- HW reports #2 and #3
Fe Boltzmann Principles

\[
\frac{N_2}{N_1} = \frac{g_2}{g_1} \exp\left\{-\frac{(E_2 - E_1)}{k_B T}\right\}
\]

\[
T = \frac{\Delta E / k_B}{\ln \left(\frac{g_2 \cdot N_1}{g_1 \cdot N_2}\right)}
\]

Fluorescence Intensity Ratio ⇔ Population Ratio ⇔ Temperature
Fe Boltzmann Temperature Extended into the Thermosphere at McMurdo

(a) 372-nm Fe Density on 28 May 2011 @ McMurdo
(b) Fe Temperature on 28 May 2011 @ McMurdo
(c) Temperature on 28 May 2011 @ McMurdo

Taken from [Chu et al., Geophysical Research Letters, 2011]
The Ionosphere and Thermosphere

MSISE-90

65°N 147°W
June 21, 2002 00 LST

Altitude (km)

Temperature (K)

Density (kg/m³)

Concentration (cm⁻³)

[O₂]/[N₂]

[O]/[O₂]

MSISE-90

65°N 147°W
June 21, 2002 0000 LST

Altitude (km)

Altitude (km)

Altitude (km)

Altitude (km)

Courtesy to Richard Collins of UAF
The aurora modifies the composition of the ionosphere.
The Spectroscopy of Molecules vs. Atoms

Molecular spectroscopy has vibrational and rotational states.

Courtesy to Richard Collins of UAF
A dual laser lidar system employing solid-state lasers could be used to profile two rotational states simultaneously and hence study the energy deposition in the auroral ionosphere.

Courtesy to Richard Collins of UAF
Raman Scattering of N_2 and O_2

Fig. 9.1. Vibration–rotation energy levels of the N_2 molecule, Raman transitions, and resulting spectrum.

- Raman shift amount is independent of incident laser wavelength
Raman Scattering

- Volume backscatter coefficient for single Raman lines

\[\beta_J(z) = \left(\frac{d\sigma}{d\Omega} \right)^{RR,VRR}_J \]

\[n_J(z) = k_\nu \left(\tilde{\nu}_1 \mp |\Delta \tilde{\nu}| \right)^4 \frac{g_N \Phi_J}{(2I + 1)Q} n(z) \exp \left[- \frac{B_i h c_0 J(J + 1)}{k_B T} \right] \]

Which is the product of the transition probability and the population on the initial energy state. So the temperature dependence comes from the population distribution - Boltzmann distribution law!

[Behrendt, “Temperature measurements with lidar”, Chapter 10 in “Lidar”, 2005]
Rotation Raman Lidar

- Depending on what the initial energy state is, the line intensity can increase or decrease when temperature increases.
- If the initial energy state is one of the upper levels of the ground state, increasing in temperature will increase the population on the initial state, so the Raman line intensity will increase.
- If the initial energy state is the lowest level of the ground state, increasing temperature will decrease the population on the initial state, so the Raman line intensity will decrease.
- By measuring the intensity of two Raman lines with opposite temperature dependence, the ratio of these two lines is a sensitive function of atmospheric temperature.

$$Q(T, z) = \frac{S_{RR2}(T, z)}{S_{RR1}(T, z)}$$
Therefore, temperature can be derived from the ratio of two pure Rotational Raman line intensity. This is essentially the same principle as Boltzmann temperature technique!
Technical Implementation and Challenges in Rotation Raman Lidar

- Rotational Raman (RR) temperature lidars are usually designed as add-on systems to existing lidar facilities, as RR lidars can share the same radiation sources with the existing lidars. This is because on frequency scale, the Raman shift is independent of laser wavelength.

- In principle, any lidar beam can generate rotational Raman scattering. So the major challenges to RR lidar are the high requirements on separation and blocking power of the filters implemented in the lidar receiver.

- The elastic scattering (Rayleigh and Mie) must be sufficiently compressed/eliminated, while the RR scattering lines with different temperature dependences must be separated from each other.

- Injection seeding to pulsed laser can help stabilize the laser output frequency, so helping the calibration of RR temperature lidar.
Combined Rotation Raman and Elastic Scattering Lidar

[Behrendt, “Temperature measurements with lidar”, Chapter 10 in “Lidar”, 2005]
Rotation Raman + Elastic Lidar

Lidar Polychromator

[Behrendt, “Temperature measurements with lidar”, Chapter 10 in “Lidar”, 2005]
Results from Combined RR and Elastic Scattering Lidar

Fig. 10.11. Intensities of the RASC lidar signals for the temperature measurements: rotational Raman signals (RR1 and RR2) and high-altitude elastic signal (El. high). For this plot, 72 minutes (216,000 laser pulses) of nighttime lidar data were taken with a height resolution of 72 m, summed, the background was subtracted, and the data were finally smoothed with a sliding average of 360 m. The photon emission rate of the laser is $\sim 8 \times 10^{19}$ photons/s. In the high-altitude elastic signal, the effect of the chopper can be seen below ~ 25 km and the signature of a cirrus cloud in ~ 13 km height.

[Behrendt, “Temperature measurements with lidar”, Chapter 10 in “Lidar”, 2005]
Results from Combined RR and Elastic Scattering Lidar

Fig. 10.12. Simultaneous temperature measurements with rotational Raman technique and with integration technique (signals see Fig. 10.11). Profiles of a climatological model atmosphere (CIRA-86 for 35°N and the month of the lidar measurements) and of a radiosonde are shown for comparison. Rotational Raman temperature data: height resolution of 72 m up to 15 km height, 360 m between 15 and 20 km height, 1080 m between 20 and 30 km height, and 2952 m above 30 km. Height resolution of the integration technique data is 2952 m. Error bars show the 1–σ statistical uncertainty of the measurements [48].

[Behrendt, “Temperature measurements with lidar”, Chapter 10 in “Lidar”, 2005]
DIAL Temperature Technique

- Molecular absorption coefficient is temperature dependent: both the line strength and the lineshape are function of temperature.

- So by measuring the molecular absorption coefficient, it is possible to derive temperature if the molecular number density is known. For this purpose, \(\text{O}_2 \) is chosen because of its constant mixing ratio up to high altitude and suitable absorption lines.

- In the choice of suitable absorption line, a trade-off must be made between the high temperature sensitivity of the absorption cross-section (high for high initial energy state) and the suitable magnitude of absorption coefficient.

- Absorption coefficient is also dependent on pressure, making the temperature derivation more difficult.
Summary

- Boltzmann technique utilizes Maxwell-Boltzmann distribution of atomic or molecular populations on different energy levels, which is directly temperature dependent.

- The temperature-dependent population ratio is inferred through the intensity ratio of two resonance fluorescence lines whose lower energy levels are the two energy levels that we concern.

- The key is to find the right energy level diagrams that are suitable to this measurement - energy separation is not too large or too small, and wavelengths fall in the laser reachable range.

- Boltzmann technique can be applied to not only the Fe Boltzmann lidar but also potentially to other molecular species like N_2^+.

- Boltzmann technique is also used in rotational Raman lidar and in airglow temperature mappers, like Bomem.
HW Reports #2 and #3

- Atmosphere transmission/attenuation caused by Rayleigh scattering
- Doppler shift and broadening
 - absorption cross section vs. absorption coefficient
- Boltzmann distribution
- Raman shift in Raman scattering

- Transmission/attenuation caused by Na absorption
- Envelope estimate of Na and K return signals