
LIDAR REMOTE SENSING	
 	
PROF. XINZHAO CHU 	
CU-BOULDER, FALL 2012	


Lecture 10. Lidar Simulation 
and Error Analysis Overview (2) 

  Introduction �

  Accuracy versus Precision �

  Classification of Measurement Errors�

  Accuracy in lidar measurements�

  Precision in lidar measurements�

  General procedure of error analysis�

  Monte Carlo Method�
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Introduction 
  For all physical experiments, errors or uncertainties exist that 
must be reduced by improved understanding of physical processes, 
improved experimental techniques, and repeated measurements. 
Those errors remaining must be estimated to establish the validity 
of our results.�
  Error is defined as “the difference between an observed or 
calculated value and the true value”. �
  Usually we do not know the “true” value; otherwise there would 
be no reason for performing the experiment. We may know 
approximately what it should be, however, either from earlier 
experiments or from theoretical predictions. Such approximations 
can serve as a guide but we must always determine in a systematic 
way from the data and the experimental conditions themselves how 
much confidence we can have in our experimental results.�
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Introduction 
  Before going further, let us rule out one kind of errors - 
illegitimate errors that originate from mistakes in measurement or 
computation.�

  Have you heard about the measurement of “faster-than-light 
neutrinos”, announced in September 2011? �

-- It is totally due to a bad error in the experiments: wrong 
measurement of time of flight! The experiments were also badly 
designed – using GPS instead of atomic clock to count the time! �
http://news.sciencemag.org/scienceinsider/2012/02/breaking-news-
error-undoes-faster.html �
http://www.bbc.co.uk/news/science-environment-17560379�

  A good reference book for general error analysis is “Data 
Reduction and Error Analysis for the Physical Sciences” by Philip R. 
Bevington and D. Keith Robinson (3rd edition, 2003).�
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Accuracy versus Precision 
  It is important to distinguish between the terms accuracy and 
precision, because in error analysis, accuracy and precision are two 
different concepts, describing different aspects of a measurement.�
  The accuracy of an experiment is a measure of how close the result of 
the experiment is to the true value.�
  The precision is a measure of how well the result has been determined, 
without reference to its agreement with the true value. The precision is 
also a measure of the reproducibility of the result in a given experiment.�
  Accuracy concerns about bias, i.e., how far away is the measurement 
result from the true value? Precision concerns about uncertainty, i.e., how 
certain or how sure are we about the measurement result?�
  For any measurement, the results are commonly expected to be a 
mean value with a confidence range: xi ± Δxi�

x0 �

xi�xj�

x0 �

xm�

Precise, but �
Not Accurate�

Accurate, but �
Not Precise�

xn �
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Illustration of Accuracy and Precision 

[Data Reduction and Error Analysis, Bevington and Robinson, 2003] � 5 
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Classification of Measurement Errors 
  Measurement errors are classified into two major categories: Systematic 
errors and random errors.�
  Systematic errors are errors that will make our results different from 
the “true” values with reproducible discrepancies. Errors of this type are 
not easy to detect and not easily studied by statistical analysis. They must 
be estimated from an analysis of the experimental conditions, techniques, 
and our understanding of physical interactions. A major part of the 
planning of an experiment should be devoted to understanding and 
reducing sources of systematic errors.�
  Random errors are fluctuations in observations that yield different 
results each time the experiment is repeated, and thus require repeated 
experimentation to yield precise results.�
  Another way to describe systematic and random errors are: 
Experimental uncertainties that can be revealed by repeating the 
measurements are called random errors; those that cannot be revealed in 
this way are called systematic errors.�

6 
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Illustration of Accuracy and Precision 
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Illustration of Accuracy and Precision 

8 



LIDAR REMOTE SENSING	
 	
PROF. XINZHAO CHU 	
CU-BOULDER, FALL 2012	


Errors vs. Accuracy & Precision 
  The accuracy of an experiment is generally dependent on how well we 
can control or compensate for systematic errors. �
  The precision of an experiment depends upon how well we can overcome 
random errors.�
  A given accuracy implies an equivalent precision and, therefore, also 
depends on random errors to some extent.�

Accuracy�
(Bias)�

Precision �
(Uncertainty) �

Systematic Errors� Random Errors�

9 
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Accuracy in Lidar Measurements 
  Systematic errors determine the measurement accuracy.�
  Accuracy is mainly determined by: (1) How much we understand the 
physical interactions and processes involved in the measurements or 
observations, e.g., atomic parameters and absorption cross-section, 
isotopes, branching ratio, Hanle effect, atomic layer saturation effect, 
transmission/extinction, interference absorption, etc. (2) How well we know 
the lidar system parameters, e.g., laser central frequency, laser linewidth 
and lineshape, photo detector/discriminator calibration, receiver filter 
function, overlapping function, chopper function, etc.�
  It happened in the history of physical experiments (e.g., quantum 
frequency standard) that when people understood more about the physical 
processes or interactions, the claimed experimental accuracy decreased. 
This is because some systematic errors (bias) caused by certain 
interactions were not included in earlier error analysis, as people were not 
aware of them. This could also happen to lidar measurements.�
  In the following lectures on different types of lidars, keep in mind such 
a question: What affects the lidar measurement accuracy?� 10 
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Example: Fe Boltzmann Lidar 
  Systematic bias of temperature measurements can be caused by 
ignoring the branching ratio in the Fe Boltzmann lidar.�

11 

Atomic Fe Energy Level	

[Gelbwachs, 1994; Chu et al., 2002]	


Calibration curve for 
Fe Boltzmann lidar�
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Fe Boltzmann Temperature Ratio 
  Fe resonance fluorescence lidar equation �
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(10.1) 

Rayleigh scattering lidar equation at Rayleigh-normalization altitude zR �

(10.2) 

Rayleigh normalization leads to normalized photon counts�

(10.3) 

  Take the Boltzmann temperature ratio as�

(10.4) 

  Therefore, temperature can be derived as�

(10.5) 
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Accuracy in Lidar Measurements 
  For lidar researchers, one of our major tasks is to understand the 
physical processes as good as possible (e.g., measuring atomic parameters 
accurately from lab experiments, seeking and understanding all possible 
physical interactions involved in the scattering or absorption and 
fluorescence processes like saturation effects, understanding the details of 
laser and detection process) and improve our experimental conditions to 
either avoid or compensate for the systematic errors.�
  These usually demand experimenters to be highly knowledgeable of 
atomic, molecular, and laser physics and spectroscopy, measurement 
procedure, etc. That’s why we emphasize the spectroscopy knowledge is 
fundamental to lidar technology, rather than optical/laser engineering.�
  Achieving high accuracy also requires experimenters to control and 
measure the lidar parameters very accurately and precisely. �
  On the lidar design aspect, it would be good to develop lidar systems 
that are stable and less subject to systematic errors, e.g., freq chirp.�
  Also, sometimes it is necessary to take the trade-off between accuracy 
and precision, depending on the experimental purposes/goals.� 13 
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Precision in Lidar Measurements 

  Precision is usually concerned with the random errors - errors that can 
be reduced by more repeated measurements or errors that can be 
reduced by sacrificing temporal or spatial resolutions.�
  By making many times of the same measurements and then taking the 
mean of all measurements, the random errors of the measurements can 
be reduced. The accumulation of more lidar shots is equivalent to 
repeating the same measurements to reduce uncertainties caused by 
photon noise, laser frequency jitter, and linewidth fluctuation.�

14 

  Random errors determine the measurement precision.�
  Possible sources: (1) shot noise associated with photon-counting 
system, (2) random uncertainty associated with laser jitter and electronic 
jitter. The former ultimately limits the precision because of the statistic 
nature of photon-detection processes.�
  In normal lidar photon counting, photon counts obey Poisson 
distribution. Therefore, for a given photon count N, the corresponding 
uncertainty is �

€ 

ΔN = N (10.6) 
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Precision in Lidar Measurements 
  Photon noise is the major limitation to measurement precision. From the 
error equation, we know the larger the signal photon counts, the smaller 
the error caused by photon noise. Why so?�
  A single shot results in a photon count of N with fluctuation of ΔN, 
leading to an error of ΔN/N. When many (m) shots are integrated together, 
we have the photon counts roughly mN with fluctuation of Δ(mN), leading 
to the error of Δ(mN)/mN. This error should have been reduced if we 
regard this integration procedure as taking a mean of repeated 
measurements. �

€ 

Δ(mN)
mN

=
mN
mN

=
1
m
⋅
N
N

=
1
m
⋅
ΔN
N

  Therefore, the precision error caused by photon noise can be improved 
by two ways: (1) sacrifice of temporal resolution by integrating more shots 
together; (2) sacrifice of spatial resolution by integrating more range bins 
together； or the combination of both. �

15 

(10.7) 
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Error Propagation 
  Propagation of Errors is an important aspect in lidar error analysis. This 
is because the temperature, wind, backscatter coefficient, etc. that we 
want to determine are dependent variables that are a function of one or 
more different measured variables (e.g., photon counts, laser frequency 
and linewidth). We must know how to propagate or carry over the 
uncertainties in the measured variables to determine the uncertainty in 
the dependent variables.�
  For example, photon noise causes the uncertainty in the measured 
photon counts, then the photon count uncertainty leads to the uncertainty 
in the temperature and wind ratios RT and RW, which will result in errors 
in the inferred temperature T and wind W. -- Error propagation procedure�
  Basic rules for propagation of error can be found in many textbooks, 
e.g., addition, subtraction, multiplication, division, product of power, and 
mixture of them, along with many other complicated functions.�
  We will introduce a universal procedure through the use of 
differentials of the corresponding ratios RT and RW as illustrated below. 
This method is mathematically based on the Taylor expansion. � 16 
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General Procedure of Error Analysis 

€ 

ΔT =
∂T
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∂T
∂fL
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ΔσL +
∂T
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∂T
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ΔvR

  We introduce a differentiation method as a general procedure of 
error analysis. It is applicable to all lidars as well as to normal 
measurement error analysis. Let us use the Fe Boltzmann lidar as an 
example to explain the error analysis procedure. �
  The temperature ratio for Fe Boltzmann temperature lidar is�

  Through the ratio RT, the temperature T is an implicit function of 
photon count ratio RT, laser frequencies fL374 and fL372, laser 
linewidths σL374 and σL372, radial wind vR, branching ratios RB374 and 
RB372, etc. Each parameter could have some uncertainty or error, 
leading to errors in the measured temperature.�
  Therefore, the temperature error is given by the derivatives�
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Differentiation Method 
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  The root-mean-square (rms) temperature error is given by�

  The above error equation indicates that many laser parameters 
and radial wind errors could affect the inferred temperature 
because they all influence the effective cross sections or the 
temperature ratio. In the meantime, photon noise can cause 
uncertainty in the ratio RT, resulting in temperature error.�
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  If the error sources are independent from each other, then 
the means of cross terms are zero. Then we have�

18 
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Error Derivation: Implicit Differentiation 
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  How to derive the error coefficients, like                  ? �

  We may use the implicit differentiation through RT as below: �

  For the photon-noise induced temperature error, �
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1
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⋅
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  The relative error of RT can be derived in terms of measured 
signal and background photon counts (see later slides).� 19 

Reciprocal of Sensitivity�

Relative error of RT �

(10.12) 

(10.13) 
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Derivation of Error Coefficients 

€ 

RT
∂RT /∂T

=
RT

[RT (T + δT) − RT (T)]/δT

  The temperature error coefficient can be derived numerically�

  Two approaches to derive the above numerical solution: �
(1)  One way is to use the equation of RT in terms of physical processes. 

You don’t have to go through the entire simulation process each time 
when you change the temperature, but just calculate the RT from the 
effective cross section and Boltzmann equation.�

(2)  Another way is to use the equation of RT in terms of photon counts, 
and then go through the entire simulation procedure to re-compute RT 
for each new temperature. This method is more universal than the first 
approach, because not all cases could have a RT written in terms of 
pure physical cross sections. �
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Derivation of ΔRT/RT 
  Temperature ratio RT will be derived from the actual photon 
counts of N374 and N372 �
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(10.17)�

(10.18)�

Combining Eq. (10.17) with Eq. (10.18), we have�
(10.19)�

Regarding the errors from two channels are uncorrelated, we have�

(10.20)�

Considering the signal photon counts are derived by subtracting the 
background counts from the total photon counts, the photon count 
uncertainty is given by �

€ 

ΔN374( )2 = N374 + B, ΔN372( )2 = N372 + B (10.21)�

Using differentiation method, we have�

21 
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Derivation of ΔRT/RT Cont’d 
  Substituting Eq. (10.21) into Eq. (10.20) and considering Eq. (10.17), 
we obtain �
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  Some algebra derivation leads us to the final result �

(10.23)�

  If we change the expression to SNR of the 372-nm channel, then 
we have an approximate expression as below: �
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where SNR is defined as �
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Temperature Error Due to 
Photon Noise 

  Integrating above equations together, we obtain the equation for 
the temperature error caused by photon noise as below: �
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  The photon counts in the above equation can be written in terms 
of signal to noise ratio (SNR), if it is more convenient or desirable 
for some analyses.�
  Temperature error is inversely proportional to the sensitivity (ST) 
and the signal to noise ratio (SNR).�

23 
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Summary 
  Accuracy and precision are two different concepts for lidar 
error analysis. Accuracy concerns about bias, usually determined 
by systematic errors. Precision concerns about uncertainty, mainly 
determined by random errors, and in lidar photon counting case, 
mainly by photon noise.�

  Error analysis is an important part for lidar research. Many 
confusing ideas are the in field, especially on the accuracy versus 
precision issues.�

  The differentiation of metric ratio method can apply to both 
systematic and random errors, depending on the nature of the 
errors. Error sources could be systematic bias or random jitter, 
and measurement errors could also be systematic or random 
errors.�

  One approach is to use the “differentiation method”, and 
another one is the Monte Carlo approach.� 24 
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Monte Carlo Method 
  To reveal how random error sources affect the measurement 
precision and accuracy, an approach different than the above 
analytical “differentiation method” is the “Monte Carlo Method”. �
  It is not easy to repeat lidar observations in reality, but it is 
definitely achievable in lidar simulation and error analysis. The Monte 
Carlo method is to repeat the simulation many times with random 
sampling of the interested lidar or atmospheric or atomic parameters 
within their random error ranges and then check how the 
measurement results are deviated from the true values.�
  For example, the laser central frequency has random errors due 
to frequency jitter. To investigate how it affects the measurements, 
we may run the simulation of single shot many times and for each 
shot we let the laser central frequency randomly pick one value 
within its jitter range. By integrating many shots together, we then 
look at how the temperature or wind ratios are deviated from the 
expected ratios if all the shots have the accurate laser frequency.� 25 
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Summary 
  Lidar simulation and error analysis are the “lidar modeling”. It 
is an integration of complicated lidar remote sensing procedure. �

  The key is still our understanding of the lidar theory and the 
physical interactions between the laser light and the objects you 
want to study. Only when we clearly understand the interactions 
in the atmosphere and the entire lidar detection procedure could 
we do good lidar simulation and error analysis.�

  Calculation of errors for ratio technique utilizes the 
differentiation of the metric ratios as described in the textbook 
and in this lecture. It works for both systematic and random 
errors. It also works for both error analysis and sensitivity 
analysis.�
  Reference our textbook: section 5.2.2.5.2 �

26 


