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Lecture 38. Lidar Error Analysis 
and Sensitivity Analysis 

  Introduction �

  Accuracy versus Precision �

  Classification of Measurement Errors�

  Accuracy in lidar measurements�

  Precision in lidar measurements�

  Error analysis procedure�

  sensitivity analysis�

  Summary�
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Introduction 
  For all physical experiments, errors and uncertainties exist that must 
be reduced by improved understanding of physical processes, improved 
experimental techniques, and repeated measurements. Those errors 
remaining must be estimated to establish the validity of our results.�
  Error is defined as “the difference between an observed or calculated 
value and the true value”. �
  Usually we do not know the “true” value; otherwise there would be no 
reason for performing the experiment. We may know approximately what 
it should be, however, either from earlier experiments or from theoretical 
predictions. Such approximations can serve as a guide but we must always 
determine in a systematic way from the data and the experimental 
conditions themselves how much confidence we can have in our 
experimental results.�
  Before going further, let us rule out one kind of errors - illegitimate 
errors that originate from mistakes in measurement or computation.�
  A good reference book for general error analysis is “Data Reduction 
and Error Analysis for the Physical Sciences” by Philip R. Bevington and D. 
Keith Robinson (3rd edition, 2003).� 2 
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Accuracy versus Precision 
  It is important to distinguish between the terms accuracy and 
precision, because in error analysis, accuracy and precision are two 
different concepts, describing different aspects of a measurement.�
  The accuracy of an experiment is a measure of how close the result of 
the experiment is to the true value.�
  The precision is a measure of how well the result has been determined, 
without reference to its agreement with the true value. The precision is 
also a measure of the reproducibility of the result in a given experiment.�
  Accuracy concerns about bias, i.e., how far away is the measurement 
result from the true value? Precision concerns about uncertainty, i.e., how 
certain or how sure are we about the measurement result?�
  For any measurement, the results are commonly supposed to be a 
mean value with a confidence range: xi ± Δxi�

x0 �

xi�xj�

x0 �

xm�

Precise, but �
Not Accurate�

Accurate, but �
Not Precise�

xn �

3 
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Illustration of Accuracy and Precision 

[Data Reduction and Error Analysis, Bevington and Robinson, 2003] � 4 
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Classification of Measurement Errors 
  Measurement errors are classified into two major categories: Systematic 
errors and random errors.�
  Systematic errors are errors that will make our results different from 
the “true” values with reproducible discrepancies. Errors of this type are 
not easy to detect and not easily studied by statistical analysis. They must 
be estimated from an analysis of the experimental conditions, techniques, 
and our understanding of physical interactions. A major part of the 
planning of an experiment should be devoted to understanding and 
reducing sources of systematic errors.�
  Random errors are fluctuations in observations that yield different 
results each time the experiment is repeated, and thus require repeated 
experimentation to yield precise results.�
  Another way to describe systematic and random errors are: 
Experimental uncertainties that can be revealed by repeating the 
measurements are called random errors; those that cannot be revealed in 
this way are called systematic errors.� 5 
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Illustration of Accuracy and Precision 

6 
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Illustration of Accuracy and Precision 

7 
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Errors vs. Accuracy & Precision 
  The accuracy of an experiment is generally dependent on how well we 
can control or compensate for systematic errors. �
  The precision of an experiment depends upon how well we can overcome 
random errors.�
  A given accuracy implies an equivalent precision and, therefore, also 
depends on random errors to some extent.�

Accuracy�
(Bias)�

Precision �
(Uncertainty) �

Systematic Errors� Random Errors�

8 
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Error Analysis: Accuracy 

  Determination of σabs(ν): Hanle effect, Na layer saturation, and 
optical pumping effect. �

  Systematic errors determine the measurement accuracy.�
  Possible sources: imprecise information of (1) atomic absorption 
cross-section, (2) laser absolute frequency calibration, (3) laser 
lineshape, (4) receiver filter function, (5) photo detector calibration, 
(6) geometric factor, (7) interference gases, aerosols ... �

  Absolute laser frequency 
calibration and laser lineshape. �

  Receiver filter function and 
geometric factor.�

Hanle effect modified An: �
5, 5, 2, 14, 5, 1 →�
5, 5.48, 2, 15.64, 5, 0.98 �

Na Layer Saturation �
9 
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Accuracy in Lidar Measurements 
  Accuracy is mainly determined by: (1) How much we understand the physical 
interactions and processes involved in the measurements or observations, e.g., 
atomic parameters and absorption cross-section, isotopes, branching ratio, Hanle 
effect, atomic layer saturation effect, transmission/extinction, interference 
absorption, etc. (2) How well we know the lidar system parameters, e.g., laser 
central frequency, laser linewidth and lineshape, photo detector/discriminator 
calibration, receiver filter function, overlapping function, chopper function, etc.�
  It happened in the history of physical experiments (e.g., quantum frequency 
standard) that when people understood more about the physical processes or 
interactions, the claimed experimental accuracy decreased. This is because some 
systematic errors (bias) caused by certain interactions were not included in earlier 
error analysis, as people were not aware of them.�
  This could also happen to lidar measurements, e.g., if we were not aware of the 
branching ratio issue in resonance fluorescence lidar so did not include it in our 
data reduction, it could bias the results towards one direction. Similar things apply 
to saturation and Hanle effects, isotopes, extinction, detector calibration.�
  In the lower atmosphere, Brillouin scattering causes pressure broadening to 
Rayleigh returns (otherwise, pure Doppler broadening). If not considered, the wind 
and temperature measurements would be biased.� 10 
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Accuracy in Lidar Measurements 
  In the DIAL, if some interference gases were unknown to people thus were not 
considered or compensated in data reduction, bias could be resulted.�
  In Rayleigh integration lidars, the major issues affecting accuracy would be the 
photo detector/discriminator calibration (saturation), overlapping, chopper, and filter 
functions, interference from aerosol scattering, and atmosphere constant change in 
the upper atmosphere when air is NOT well mixed.�
  In Raman lidars, how well we know the Raman scattering cross-section, filter 
function (determine how many Raman lines are detected), aerosol interference, etc 
would affect the accuracy.�
  In high-spectral resolution lidar, how well we know the spectral analyzer and 
how stable the spectral analyzer is, will affect the accuracy and long-term 
stability.�
  If we do not know our lidar parameters well, bias could also be resulted, e.g., 
the chirp issue in Na, K, or Fe Doppler lidar due to pulsed amplification. If we 
were not aware of PMT and discriminator saturation issue, systematic bias could 
result from our ignorance. If we couldn’t measure the narrowband filter function 
well for daytime observations, systematic errors would occur.�
  For horizontal wind measurements, how accurate we know the off-zenith angle 
and the azimuth angle would also affect our measurement accuracy.� 11 



LIDAR REMOTE SENSING	
 	
PROF. XINZHAO CHU 	
CU-BOULDER, SPRING 2011	


Accuracy in Lidar Measurements 
  For lidar researchers, one of our major tasks is to understand the physical 
processes as good as possible (e.g., measuring atomic parameters accurately from 
lab experiments, seeking and understanding all possible physical interactions 
involved in the scattering or absorption and fluorescence processes like saturation 
effects, understanding the details of laser and detection process) and improve our 
experimental conditions to either avoid or compensate for the systematic errors.�
  These usually demand experimenters to be highly knowledgeable of atomic, 
molecular, and laser physics and spectroscopy, measurement procedure, etc. That’s 
why we emphasize the spectroscopy knowledge is more fundamental to lidar 
technology advancement, rather than optical/laser engineering.�
  Achieving high accuracy also requires experimenters to control and measure the 
lidar parameters very accurately and precisely. -- Easy to say but difficult to do. 
Calibrating your measurement tools is also very important.�
  On the lidar design aspect, it would be good to develop lidar systems that are 
stable and less subject to laser frequency drift or chirp, etc.�
  Also, sometimes it is necessary to take the trade-off between accuracy and 
precision, depending on the experimental purposes/goals.�

12 



LIDAR REMOTE SENSING	
 	
PROF. XINZHAO CHU 	
CU-BOULDER, SPRING 2011	


Accuracy in Lidar Measurements 
  Absolute temperature and wind values are the most difficult quantities to 
measure in lidar field, while relative perturbations are much easier to determine.�
  In lidar observations of atmosphere, the situation is more complicated as the 
atmosphere also experiences large geophysical variability. The geophysical 
variability can sometimes cover the accuracy problems of lidar measurements, and 
also makes the estimation of accuracy very difficult to perform.�
  Inter-instrument comparison (i.e., comparison between different lidars or 
between lidars and other instruments in common volume and simultaneous 
measurements) may be necessary in the assessment of lidar measurement 
accuracy. However, currently most people do not pay attention to the accuracy 
assessment, probably due to lack of knowledge or lack of funding and time.�
  For students taking this class, you should be at least aware of these issues and 
keep them in mind when you design and/or use a lidar system or lidar data.�
  Old words say “People with less knowledge are more confident” or “Compound 
ignorance”. But I would rather you are less confident about the results with more 
knowledge and awareness of accuracy issues.�
  Of course, the ultimate goal is to enhance our knowledge to improve accuracy 
or compensate systematic errors so that we are both very knowledgeable and 
confident in our measurement results.� 13 
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Error Analysis: Precision 
  Random errors determine the measurement precision. �
  Possible sources: (1) shot noise associated with photon-counting 
system, (2) random uncertainty associated with laser jitter and 
electronic jitter. The former ultimately limits the precision because 
of the statistic nature of photon-detection processes.�

  For three-frequency technique, the relative errors of RT and RW 
introduced by photon noise are (see later slides for derivation)�
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  In normal lidar photon counting, photon counts obey Poisson 
distribution. Therefore, for a given photon count N, the 
corresponding uncertainty is �

€ 

ΔN = N

14 
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Precision in Lidar Measurements 
  Precision is usually concerned with the random errors - errors 
that can be reduced by more repeated measurements or errors 
that can be reduced by sacrificing temporal or spatial resolutions.�
  By making many times of the same measurements and then 
taking the mean of all measurements, the random errors of the 
measurements can be reduced. For example, when we measure the 
radiative lifetime of an atom through measuring the decay time, 
one measurement will certainly have some uncertainty. By 
repeating the measurements several times under the same 
experimental conditions, we can reduce the uncertainty.�
  In lidar detection of atmosphere, we may not really repeat the 
“same” measurements as atmospheric conditions may never repeat. 
But we certainly can make more measurements under similar 
conditions. The accumulation of more lidar shots is equivalent to 
repeating the same measurements to reduce uncertainties caused 
by photon noise, laser frequency jitter, and linewidth fluctuation.� 15 
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Precision in Lidar Measurements 
  Photon noise is the major limitation to measurement precision. 
From the error equation, we know the larger the signal photon 
counts, the smaller the error caused by photon noise. Why so?�
  A single shot results in a photon count of N with fluctuation of 
ΔN, leading to an error of ΔN/N. When many (m) shots are 
integrated together, we have the photon counts roughly mN with 
fluctuation of Δ(mN), leading to the error of Δ(mN)/mN. This error 
should have been reduced if we regard this integration procedure as 
taking a mean of repeated measurements. �

€ 

Δ(mN)
mN

=
mN
mN

=
1
m
⋅
N
N

=
1
m
⋅
ΔN
N

  Therefore, the precision error caused by photon noise can be 
improved by two ways: (1) sacrifice of temporal resolution by 
integrating more shots together; (2) sacrifice of spatial resolution by 
integrating more range bins together； or the combination of both. � 16 
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Precision in Lidar Measurements 

  This differentiation of metric ratio method described in later 
slides can apply to both systematic and random errors, depending 
on the nature of the errors. Error sources could be systematic 
bias or random jitter, and measurement errors could also be 
systematic or random errors.�

  For example, the chirp in fa is a systematic error source if it is 
not counted, while the jitter in fa is a random error.�

  The precision errors caused by the random error sources like 
laser frequency jitter, linewidth fluctuation, and electronic jitter 
can be improved by integrating more shots together - sacrifice of 
temporal resolution, but may not be improved by integrating bins.�
  Random error sources could lead to both random and systematic 
measurement errors. For example, laser central frequency jitter in 
the 3-freq ratio technique can lead to warm temperature bias 
(systematic error) in addition to random errors.�

17 
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Error Analysis in Lidar Simulation 
  Add this part to your lidar simulation code: usually we only deal with 
the uncertainties caused by photon noise.�

  ∂RT/∂T can be calculated numerically for different operating points.�

  Derive the ΔRT/RT terms by yourself, considering background, 
Rayleigh normalization, etc.�

Error Analysis in Data Analysis 
  Add this part to your data retrieval code: keep one set of photon 
counts for error analysis. This set of photon counts should not have 
PMT, chopper, and range corrections.�

  In principle, we should use different operating point for each 
temperature/wind condition. But for general purpose of error analysis, 
people sometimes use a nominal point, e.g., T = 200 K and V = 0 m/s.�

18 
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Propagation of Errors 
  Propagation of Errors is an important aspect in lidar error analysis. This 
is because the temperature, wind, backscatter coefficient, etc. that we 
want to determine are dependent variables that are a function of one or 
more different measured variables (e.g., photon counts, laser frequency 
and linewidth). We must know how to propagate or carry over the 
uncertainties in the measured variables to determine the uncertainty in 
the dependent variables.�
  For example, photon noise causes the uncertainty in the measured 
photon counts, then the photon count uncertainty leads to the uncertainty 
in the temperature and wind ratios RT and RW, which will result in errors 
in the inferred temperature T and wind W. -- Error propagation procedure�
  Basic rules for propagation of error can be found in many textbooks, 
e.g., addition, subtraction, multiplication, division, product of power, and 
mixture of them, along with many other complicated functions.�
  We will introduce a universal procedure through the use of 
differentials of the corresponding ratios RT and RW as illustrated below. 
This method is mathematically based on the Taylor expansion. � 19 
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Error Analysis Procedure 

€ 

ΔT =
∂T
∂RT

ΔRT +
∂T
∂fa

Δfa +
∂T
∂f±

Δf± +
∂T
∂σL

ΔσL +
∂T
∂vR

ΔvR

  We use the temperature error derivation for 3-freq Na lidar as 
an example to explain the error analysis procedure using a 
differentiation method. �

  For 3-frequency technique, we have the temperature ratio �

  Through this ratio RT or further through the effective cross-
section, the temperature T is an implicit function of RT, laser 
frequencies fa, f+, f-, laser linewidth σL, radial wind, etc. Each 
parameter could have some uncertainty or error, leading to errors 
in the measured temperature.�
  Therefore, the temperature error is given by the derivatives�

€ 

RT =
σeff ( f+) + σeff ( f−)

σeff ( fa)
=
N( f+) + N( f−)

N( fa)

20 
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Differentiation Method 
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  The root-mean-square (rms) temperature error is given by�

  The above error equation indicates that many laser parameters 
and radial wind errors could affect the inferred temperature 
because they all influence the effective cross sections. In the 
meantime, photon noise can cause uncertainty in the ratio RT, 
resulting in temperature error.�
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  If the error sources are independent from each other, then 
the means of cross terms are zero. Then we have�

21 
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Error Derivation: Implicit Differentiation 
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  How to derive the error coefficients, like                ? �

  We may use the implicit differentiation through RT as below: �

  For the photon-noise induced temperature error, �

€ 

ΔT =
1

∂RT /∂T
⋅ ΔRT =

RT
∂RT /∂T

⋅
ΔRT
RT

  The relative error of RT can be derived in terms of measured 
signal and background photon counts (see later slides).� 22 
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Derivation of Error Coefficients 

€ 

RT
∂RT /∂T

=
RT

[RT (T + δT) − RT (T)]/δT

  The temperature error coefficient can be derived numerically�

  Two approaches to derive the above numerical solution: �
(1)  One way is to use the equation of RT in terms of cross sections. 

You don’t have to go through the entire simulation process each 
time when you change the temperature, but just calculate the RT 
from the effective cross section.�

(2)  Another way is to use the equation of RT in terms of photon 
counts, and then go through the entire simulation procedure to 
re-compute RT for each new temperature. This method is more 
universal than the first approach, because not all cases could 
have a RT written in terms of pure physical cross sections. �

€ 

RT =
σeff ( f+,T) + σeff ( f−,T)

σeff ( fa,T)

€ 

RT =
N( f+,T) + N( f−,T)

N( fa,T)
23 
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Derivation of ΔRT/RT 
  We use 2-freq ratio technique of Na lidar as an example to 
derive the relative error ΔRT /RT. �
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(1)�

(2)�

Combining Eq. (1) with Eq. (2), we have� (3)�

Regarding the errors from two frequencies are uncorrelated, we have�

(4)�

Considering the signal photon counts are derived by subtracting the 
background counts from the total photon counts, the photon count 
uncertainty is given by �

€ 

ΔN fc( )2 = N fc + B, ΔN fa( )2 = N fa + B (5)�

2-freq temperature ratio is defined as�

Using differentiation method, we have�

24 
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Derivation of ΔRT/RT Cont’d 
  Substituting Eq. (5) into Eq. (4) and considering Eq. (1), we obtain �
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  Some algebra derivation leads us to the final result �

(7)�

  If we change the expression to SNR of the peak frequency 
channel, then we have an approximate expression as below: �

€ 

ΔRT
RT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
rms

≈
1

SNRfa
1+

1
RT

(8)�

where SNR is defined as �
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Temperature Error Due to 
Photon Noise 

  Integrating above equations together, we obtain the equation for 
the temperature error caused by photon noise as below: �
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  The photon counts in the above equation can be written in terms 
of signal to noise ratio (SNR), if it is more convenient or desirable 
for some analyses.�

26 



LIDAR REMOTE SENSING	
 	
PROF. XINZHAO CHU 	
CU-BOULDER, SPRING 2011	


Monte Carlo Method 
  To reveal how random error sources affect the measurement 
precision and accuracy, an approach different than the above 
analytical “differentiation method” is the “Monte Carlo Method”. �
  It is not easy to repeat lidar observations in reality, but it is 
definitely achievable in lidar simulation and error analysis. The Monte 
Carlo method is to repeat the simulation many times with random 
sampling of the interested lidar or atmospheric or atomic parameters 
within their random error ranges and then check how the 
measurement results are deviated from the true values.�
  For example, the laser central frequency has random errors due 
to frequency jitter. To investigate how it affects the measurements, 
we may run the simulation of single shot many times and for each 
shot we let the laser central frequency randomly pick one value 
within its jitter range. By integrating many shots together, we then 
look at how the temperature or wind ratios are deviated from the 
expected ratios if all the shots have the accurate laser frequency.� 27 
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Sensitivity Analysis 
  Sensitivity Analysis is part of a complete lidar simulation and error 
analysis. It is to answer the question how sensitive the measurement 
errors depend on lidar, atomic, and atmospheric parameters.�
  We will show how several key lidar parameters affect measurement 
errors: (1) laser rms linewidth, and (2) laser central frequency. �
  These factors are closely related to instrument design, while other 
factors like cross-talk between temperature and wind error, Hanle 
effect, etc. can be addressed independent of instrument design.�
  Sensitivity Analysis helps define the requirements on instruments, 
e.g., linewidth and its stability, central frequency offset and stability, 
frequency shift and its stability.�
  One of the main purposes for instrument design is to ensure that 
the accuracy or precision errors caused by lidar parameter 
uncertainties are less than the desired measurement errors, like 1 m/s 
and 1 K for wind and temperature, and also less than the errors caused 
by photon noise.�
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Methodology 
(1) Start with the ratio metrics, like RT or RW, that are expressed 
through effective cross-section, e.g., for 3-frequency technique, as�

Thus, RT and RW are functions of temperature, wind, laser linewidth, 
laser central frequency, AOM frequency shift, and atomic parameters, 
etc. �€ 

RT =
σeff ( f+) + σeff ( f−)

σeff ( fa)

€ 

RW =
σeff ( f−)
σeff ( f+)

€ 

RT (T,VR ,σL, fL, fAOM ,...),RW (T,VR ,σL, fL , fAOM ,...)
(2) As an example, the temperature error caused by the uncertainty in 
laser RMS width should be derived as�

€ 

ΔT =
∂T

∂σrms
⋅ Δσrms =

∂RT /∂σrms
∂RT /∂T

⋅ Δσrms

€ 

∂T
∂σrms

=
∂RT /∂σrms
∂RT /∂T

€ 

∂T
∂σrms

=
[RT (σrms + δσrms) − RT (σrms)]/δσrms

[RT (T + δT) − RT (T)]/δT

The temperature error coefficient �
is derived as�

(K/MHz)�

Based on principle of derivative of implicit function: �

#-- T is an implicit function of σrms through RT.�
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Methodology Cont’d 
(3) Considering the nonlinear dependence of error coefficient on laser 
linewidth, actual temperature error can be calculated as (for larger 
uncertainty)�

€ 

ΔT =
[RT (σrms + Δσrms) − RT (σrms)]/Δσrms

[RT (T + δT) − RT (T)]/δT
⋅ Δσrms (K)�

(4) Both temperature error and error coefficient can be computed for 
each operating point, e.g., T = 200 K, VR = 0 m/s, σrms = 60 MHz, etc. The 
operating points may be varied, e.g., try σrms of 10, 20, 30, 40, 60, 100 
MHz, or T = 150, 200, 250 K, or VR = -20, 0, +20 m/s. �

(5) Such method can be applied to the wind metric RW. �
(6) Also, similar method can be used on laser central frequency, AOM 
frequency shift, etc. for both temperature error and wind error analyses.�

 This differentiation approach is a method generally applicable for 
lidars using ratio techniques, not only Na Dopper lidar, but also Fe and 
K Doppler lidars, and others like edge-filter technique wind lidars, etc.�
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Example Results for 3-Freq Na Lidar: 
Laser Linewidth Influence 
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Laser Linewidth and Uncertainty 
  When the laser rms linewidth (σrms) is smaller, the 
temperature and wind errors caused by the same 
uncertainty in laser linewidth are smaller.�

  For 60 MHz rms linewidth (like the current dye-laser-
based Na Doppler lidar), 4 MHz rms width uncertainty is 
acceptable.�

  If the solid-state Na Doppler lidar has laser rms 
linewidth to about 30 MHz, then the acceptable rms width 
uncertainty can be larger.�
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Example Results for 3-Freq Na Lidar: 
Laser Central Frequency 
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Laser Central Frequency 
including chirp and jitter 

  Wind errors are much more sensitive to the uncertainty 
or bias in the laser central frequency than temperature 
errors.�

  To keep less than 1 K temperature error, 10 MHz 
uncertainty or bias in laser central frequency is 
acceptable; however, 10 MHz would result in about 6 m/s 
wind error.�

  To keep less than 1 m/s wind error, the uncertainty or 
bias in laser central frequency should be less than 2 MHz.�
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Summary 
  Lidar simulation and error analysis are the “lidar modeling”. It 
is an integration of complicated lidar remote sensing procedure. �

  The key is still our understanding of the lidar theory and the 
physical interactions between the laser light and the objects you 
want to study. Only when we clearly understand the interactions 
in the atmosphere and the entire lidar detection procedure could 
we do good lidar simulation and error analysis.�

  Calculation of errors for ratio technique utilizes the 
differentiation of the metric ratios as described in the textbook 
and in this lecture. It works for both systematic and random 
errors. It also works for both error analysis and sensitivity 
analysis.�
  Reference our textbook: section 5.2.2.5.2 �
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Summary 
  Accuracy and precision are two different concepts for 
lidar error analysis. Accuracy concerns about bias, usually 
determined by systematic errors. Precision concerns about 
uncertainty, mainly determined by random errors, and in 
lidar photon counting case, mainly by photon noise.�

  Error and sensitivity analysis is an important part for 
lidar research. Many confusing ideas are the in field, 
especially on the accuracy versus precision issues.�

  One approach is to use the “differentiation method”, and 
another one is the Monte Carlo approach.�
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