Polarization Lidar Bathymetry

Steve Mitchell

ASEN 6519

Department of Aerospace Engineering Sciences University of Colorado at Boulder 4.15.2011

Outline

- Background
- Motivation
- Polarization scatter
- Prototype instrument

BACKGROUND

ASEN 6519, Lidar Bathymetry Steve Mitchell 15 April 2011

Background

- Transmit pulse of laser radiation (1)
- Reflection off target (2)
- Receive return pulse (3)
- Range is function of transit time

Steve Mitchell 15 April 2011

Background

Account for

- Timing, sampling rate
- Beam divergence
- Pulse energy, width, rep rate
- Platform characteristics
- Target characteristics
- ...and many more!

[3]

History

- Satellite, lunar ranging
 - Required placement of retroreflectors

Retroreflector Array Sites

History

- Laser altimeter developed soon thereafter
 - NASA's AOL in 1977
- > Airborne, Shuttle, and satellite platforms
 - NASA ATM, Microaltimeter
 - SLA -01 and -02
 - MOLA, GLAS, MLA, LOLA

Applications

- Topographical mapping
- Agriculture and forestry
- Environmental research
- Urban planning
- Disaster evaluation
- Bathymetry

MOTIVATION

ASEN 6519, Lidar Bathymetry Steve Mitchell 15 April 2011

Motivation

Limitations of traditional lidar bathymetry

System Bandwidth Limited Depth Measurement

Motivation

Motivation

- Dynamic water volume displacement [13,14]
- Science demands comprehensive water depth measurement capability

POLARIZATION SCATTER

ASEN 6519, Lidar Bathymetry Steve Mitchell 15 April 2011

Polarization Scatter

Polarization-maintaining vs/ depolarizing targets

ASEN 6519, Lidar Bathymetry Steve Mitchell 15 April 2011

INPHAMIS

Foundational setup for intrapulse phase modification induced by scattering^[17]

S. Mitchell, J. P. Thayer, and M. Hayman, "Polarization lidar for shallow water depth measurement," *Applied Optics*, **49** (2010)

ASEN 6519, Lidar Bathymetry Steve Mitchell 15 April 2011

INPHAMIS

Evaluate the received Stokes vector

INtrapulse PHAse Modification Induced by Scattering

INPHAMIS

Laboratory demonstration

PROTOTYPE INSTRUMENT

ASEN 6519, Lidar Bathymetry Steve Mitchell 15 April 2011

Prototype instrument

- Photon-counting polarization lidar for shallow water bathymetry
- Prototype technology demonstrator
- Designed to explore INPHAMIS beyond the laboratory

COTS design

- Instrument simulation
 - 300 m altitude, 10 m depth, random Poisson noise

Simulated TDC, 10 cm depth, "switching"

ASEN 6519, Lidar Bathymetry Steve Mitchell 15 April 2011

Incorporating count PDF effects

ASEN 6519, Lidar Bathymetry Steve Mitchell 15 April 2011

Incorporating count PDF effects

ASEN 6519, Lidar Bathymetry Steve Mitchell 15 April 2011

References

- [1] "GeoLas Consulting: Laser Altimetry." http://www.geolas.com/Pages/laser.html.
- [2] X. Chu. ASEN6519: Lidar Remote Sensing, University of Colorado, Boulder, Lecture 35, fall 2008.
- [3] M. Mahoney. "Pointing an Instrument on an Airborne Platform." http://mtp.jpl.nasa.gov/notes/pointing/pointing.html.
- [4] J. Degnan. "Applications of High Precision Laser Ranging to Artificial Satellites, the Moon, and the Planets." GSFC Engineering Colloquium, 26 Mar 2007.
- [5] D. Smith, et al. "Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars." Journal of Geophysical Research, vol 106 (E10), 25 Oct 2001.
- [6] "Fresnel Equations." http://en.wikipedia.org/wiki/Fresnel_equations.
- [7] G. Guenther, A. Cunningham, P. LaRoque, and D. Reid, "Meeting the accuracy challenge in airborne lidar bathymetry," in *Proceedings of 20th* EARSeL Symposium: Workshop on Lidar Remote Sensing of Land and Sea, Dresden, Germany, 16-17 June 2000, 28 pp.
- [8] G. Guenther and R. Thomas, "System design and performance factors for airborne laser hydrography," in *Proceedings Oceans* '83, San Francisco, California, 29 August 1 September 1983, pp. 425-430.
- [9] G. Guenther, "Airborne lidar bathymetry" in *Digital Elevation Model Technologies and Applications: The DEM Users Manual*, 2nd Ed., D. Maune, ed. (2007), pp. 253-320.
- [10] J. Irish and T. White, "Coastal engineering applications of high-resolution lidar bathymetry," Coastal Engineering, 35, 47-71 (1998).
- [11] A. Nayegandhi, J. Brock, and C. Wright, "Classifying vegetation using NASA's Experimental Advanced Airborne Research Lidar (EAARL) at Assateague Island National Seashore," in *Proceedings ASPRS Annual Conference*, Baltimore, Maryland, 7-11 March 2005, 15 pp.
- [12] S. Pe'eri and W. Philpot, "Increasing the Existence of Very Shallow-Water LIDAR Measurements Using the Red-Channel Waveforms." IEEE Transactions on Geoscience and Remote Sensing, **45**, 1217-1223 (2007).
- [13] A. Witze, "Melting at the microscale", Science News, **177**(13), 19 June 2010.
- [14] Das, S., et al. "Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage." Science, 320(778), 2008.
- [15] H. Zwally, "Surface melt-induced acceleration of Greenland ice-sheet flow," Science, 297, 12 July 2002.
- [16] J. Churnside, "Polarization effects on oceanographic lidar," Opt. Express, 16, 1196-1207 (2008).
- [17] S. Mitchell, J. P. Thayer, and M. Hayman, "Polarization lidar for shallow water depth measurement," Applied Optics, 49 (2010).
- [18] S. Lu and R. Chipman, "Interpretation of Mueller matrices based on polar decomposition," J. Opt. Soc. Am. A, **13**(5), 1106-1113 (1996).
- [19] Image modified from: http://www.miniaturesplus.com/bb305.jpg.

ASEN 6519, Lidar Bathymetry Steve Mitchell 15 April 2011

