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Lecture 29. Na Doppler Lidar -
Data Retrieval, Lidar Simulation,
and System Optimization

J Data retrieval procedure vs. lidar setup
J STAR Na Doppler lidar simulation
J STAR lidar optimization
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Data Inversion - Solving Lidar Equations

 Lidar data inversion deals with the problems of how to derive
meaningful physical parameters from raw data.

 Raw data are usually a column or a row of photon counts, where the
positions of photon counts in the column or row mark their time bins,
thus the ranges or heights.

[ Data inversion is basically a reverse procedure to the development of
lidar equation, i.e., solving the lidar equations to derive unknowns.

J For Na layers in the MLT region, three main unknown parameters:
Temperature, wind and Na density. Therefore, by the minimum, three
equations are required to derive three unknowns, which is the basic idea
for 3-frequency Na Doppler wind and temperature lidar. The Maui data
given in the homework projects were taken by such a lidar.

It is necessary to understand the detailed physical procedure from
light transmitting, to light propagation, to light interaction with objects,
and to light detection, in order fo conduct data inversion correctly.
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Na Doppler Lidar at Maui
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Chopper Function - Transmission

[ Chopper function is measured and then used to do chopper correction

for lower atmosphere signals
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Pr'ocess Step 1:

Starting Point & Deriving T and V,

Extinction (Tc) at the bottom of Na layer is 1
Calculate the normalized photon count for each frequency

Ng(Az2)-Np z°= 1 ~ ng(2)
Ns(Azg) - Np zp* Tcz(A,Z) ng(zg)

NNorm ()"92) =

Based on the normalized photon counts, you get R; and R,

o N ([0 + Ny, (2] [ Norm<f+,z> N o (f52)
' Ny (f1r2) ! vom (f52)

Estimate the tfemperature and wind using the calibration

curves computed from physics (iteration vs. look-up table)
9
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Tteration vs. Look-up Table

[ Look up these two ratios on the calibration curves tfo infer the
corresponding Temperature and Wind from isoline/isogram.
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A Key Step to Main Process
* Extinction (T¢)

b

Na Layer

Bin3 T, 3=T, ) xexp(—=O,p 2 N, o Az)
Bin2 I. ,=1. , XGXP(—Geﬁ_l "N A7)
Binl Tc_l =1
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Mam Process Step 2:
Bin-by-Bin Procedure & Loop

5. Calculate the Na effective cross section using temperature
and wind derived.

6. Using the effective cross-section and Tc =1 (at the bottom),
calculate the Na density using peak frequency signal or
weighted 3-frequency signals.

7. From effective cross-section and Na density, calculate the
extinction for the next bin.

Geﬁ‘ ()L,Z)i’lc(Z)dZ) = exp{— Eaeﬁ (A,z)nc(z)Az)

<hottom

T.(A2) = eXp(— S

<hottom

8. Loop through fo repeat the procedure for the next bin for
normalized counts, T and V,, and Na density, until reaching
the end of the Na layer. 12
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Na Density Derivation

1 The Na density can be inferred from the peak freq signal

Oq

nNa(Z) _ Nnorm(faaz) 4-7TnR(ZR)OR _ Nnorm(fa’z) 4]‘5X2.938X10_32 ;)EERi . A40117
R .

1

a

1 The Na density can also be inferred from a weighted average of all
three frequency signals. The weighted effective cross-section is defined as

Op vy = O, +QO, + pO_

O')O’eﬁ” wgt -0 aaeﬁ”_ wgt -0
where o and f§ are chosen so that oT ’ OV

This method is to make the weighted effective cross-section insensitive

to T and Vg, in order to minimize the Na density errors caused by the

errors in derived T and V.

d The Na density is then calculated by

nng(2) =4mng(zgr)OR

N yorm (fa Z) + AN yorm (f+ 2) + ﬁNnorm (f_,2)

o,+a0, +pPo_

13
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STAR Lidar Simulation Results

J See MatLab code demonstration

For very moderate lidar pulse energy (16.7 mJ/pulse),
relatively low receiver efficiency (80% reflectivity at 589 nm
for primary and secondary mirrors, respectively) and the
40-cm diameter true-Cassegrain felescope, the simulation
results show that

(1) Rayleigh sum of 300 shots for 25-35 km is about 26,900
counts

(2) Rayleigh sum of 300 shots for 30-40 km is about 9,100
counts

(3) Na signals of integration through the entire Na layer is
about 150 count/shot.

15
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STAR Lidar Receiver Optimization

J Signal strength increased by a factor of 4-5 times from
September 2010 to March 2011. It was achieved by much
more precise alignment of the telescope and receiver chain.
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STAR Lidar Receiver Optimization

J Similar as above, except Rayleigh is from 30-40 km range
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1 The Na signals have reached 80 counts/shot for the STAR

lidar with a receiver consisting of a 40-cm telescope.
17



