
Lecture 16. Temperature Lidar (6) Integration Technique

- Review Doppler and Boltzmann techniques
- □ Integration technique for temperature
- Searchlight integration lidar
- Rayleigh integration temperature lidar
- Vibrational Raman integration lidar
- □ Falling sphere temperature measurement
- Rayleigh/Raman lidar instrumentation
- Summary

Review of Doppler & Boltzmann

Doppler effect and Boltzmann distribution are two effects that are directly temperature-dependent. The Doppler technique and Boltzmann technique are "straight-forward" in the sense of deriving temperature or wind. However, the lidar architecture is usually complicated and sophisticated, due to the high demands on frequency accuracy and tuning, laser linewidth, and laser power etc.

$$T = \frac{\Delta E / k_B}{\ln \left(\frac{g_2}{g_1} \cdot \frac{N_1}{N_2}\right)}$$

2

 $|d P(z) = -\rho(z)g(z)dz|$

The hydrostatic equation

🖵 Ideal gas law

$$P(z) = \frac{\rho(z)RT(z)}{M(z)}$$

Integration from the upper altitude yields

$$T(z) = T(z_0) \frac{\rho(z_0)}{\rho(z)} \frac{M(z)}{M(z_0)} + \frac{M(z)}{R} \int_{z}^{z_0} \frac{\rho(z')g(z')}{\rho(z)} dz'$$

T(z) = atmospheric temperature profile (K)

P(z) = atmospheric pressure profile (mbar)

 $\rho(z)$ = atmospheric mass density profile (kg/m³)

- g(z) = gravitational acceleration (m/s²)
- M(z) = mean molecular weight of the atmosphere,

- R = universal gas constant (8.314472 J/mol/K)
- z_0 = altitude of the upper level starting temperature (m)

Integration Technique

□ Atmosphere mass density $\rho(z)$ vs number density n(z)

 $\rho(z) = n(z)M(z)/N_A$

where N_A is the Avogadro constant: $N_A = 6.02214179 \times 10^{23}$ mol⁻¹

🗖 Thus, we have

$$T(z) = T(z_0) \frac{n(z_0)}{n(z)} + \frac{M(z)}{R} \int_{z}^{z_0} \frac{n(z')M(z')g(z')}{n(z)M(z)} dz'$$

Below 100 km for the well-mixed atmosphere, we have M(z) = M(z'), so they cancel out in the integration

$$T(z) = T(z_0) \frac{n(z_0)}{n(z)} + \frac{M(z)}{R} \int_{z}^{z_0} \frac{n(z')g(z')}{n(z)} dz'$$

Number density ratio (relative number density)

⇒ Temperature profile

Error Analysis for Integration Tech

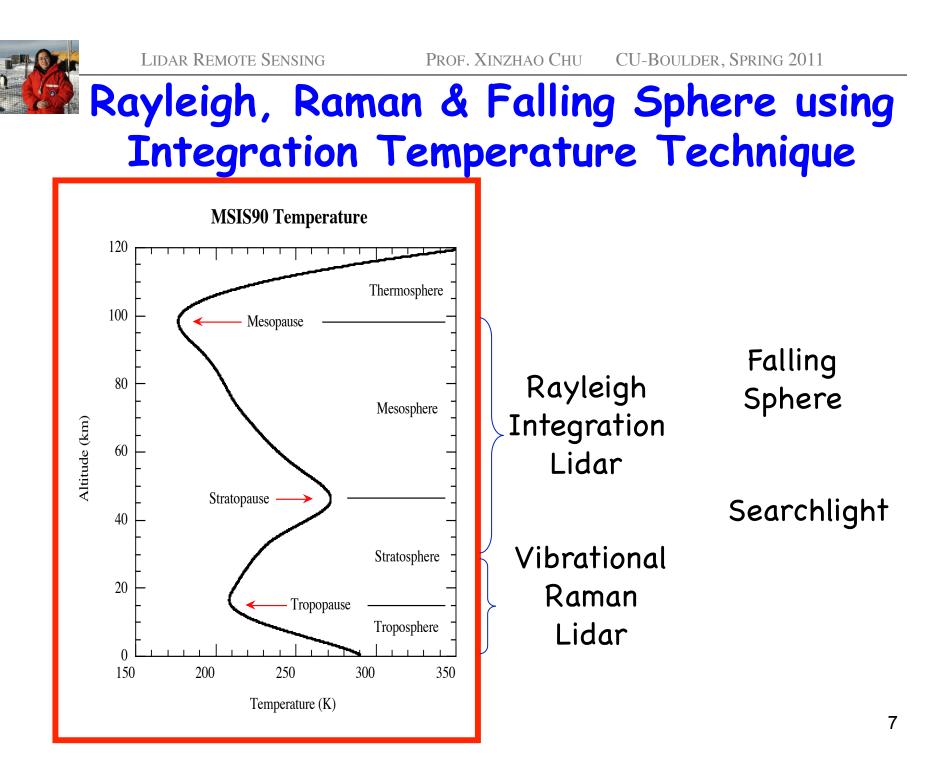
The uncertainty is determined by the photon noise and upper altitude temperature $T(z_0)$. The variance of derived temperature is given by

$$\operatorname{var}[T(z)] \approx \frac{T^{2}(z)}{N_{R}(z)} + \left\{ \operatorname{var}[T(z_{0})] + \frac{T^{2}(z_{0})}{N_{R}(z_{0})} \right\} \exp\left[-2(z_{0} - z)/H\right]$$

After 1-2 scale height, the error introduced by $T(z_0)$ is not important anymore. So the temperature error is mainly determined by the photon counts and their noise.

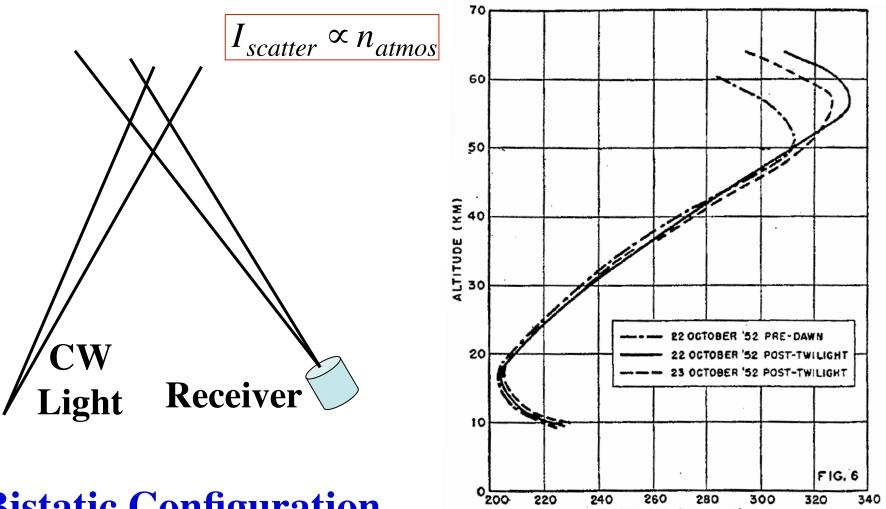
□ The key is how to measure atmosphere (relative) density with high accuracy and precision. Different approaches can be applied, not limited to pulsed lidar technique.

From Searchlight to Rayleigh, Raman & Falling Sphere


□ Integration temperature technique relies on the assumptions of hydrostatic equilibrium equation and ideal gas law in atmosphere. It involves integrating the atmosphere relative density profile downward using a starting temperature at an upper altitude.

□ It was pioneered by *Elterman* [1951, 1953, 1954] with cw searchlight to measure stratospheric density thus deriving temperature in 1950s.

The use of high power lasers with the Rayleigh lidar in the atmosphere region (30-100 km) free of aerosol and fluorescence was pioneered by Hauchecorne and Chanin [1980] (French group).


□ In the lower atmosphere where aerosol scattering contaminates Rayleigh scattering, Keckhut et al. [1990] developed Raman lidar to measure atmosphere density from vibrational Raman scattering and then derive temperature below 30 km.

□ Inflatable falling sphere provides high-precision atmosphere density thus temperature measurements [Schmidlin et al., 1991].

Searchlight Integration Lidar

Bistatic Configuration

[Elterman, JGR, 1954] 8

TEMPERATURE (*K)

280

300

340

320

260

240

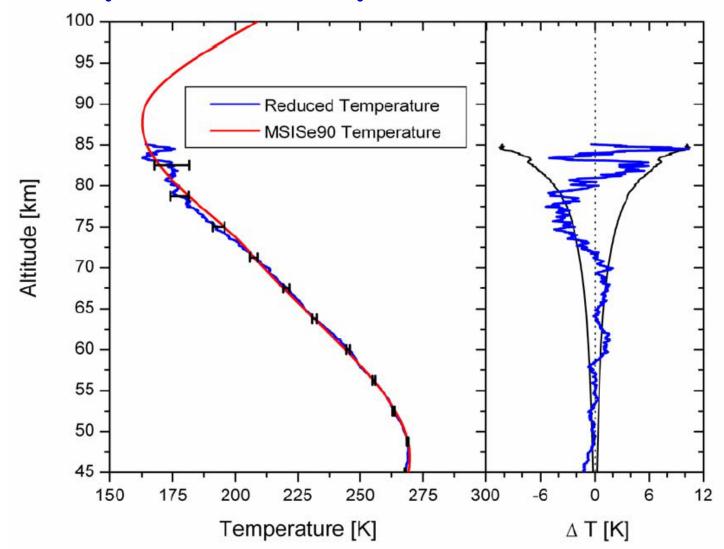
220

Rayleigh Integration Lidar

□ In the atmosphere region free of aerosols and fluorescence, the lidar return photon counts are given by

$$N_{S}(\lambda,z) = \left(\frac{P_{L}(\lambda)\Delta t}{hc/\lambda}\right) \left(\beta_{Rayleigh}(z)\Delta z\right) \left(\frac{A}{z^{2}}\right) T_{a}^{2}(\lambda,z) \left(\eta(\lambda)G(z)\right) + N_{B}$$

where Rayleigh backscatter coefficient is proportional to atmosphere number density $\beta_{Ray}(z) = \sigma_{Ray}(\pi,\lambda)n_a(z)$


□ Thus, ratio of normalized photon counts gives the atmosphere relative density information

$$\frac{N_S(z_1) - N_B}{N_S(z_2) - N_B} \frac{z_1^2}{z_2^2} = \frac{n_a(z_1)}{n_a(z_2)}$$

Lidar Backscatter Ratio ⇒ Relative Density ⇒ Temperature (at different altitudes) (Rayleigh)

Sample of Temperature and Error

Courtesy of Josh Herron and Prof. Vincent Wickwar @ USU10

PROF. XINZHAO CHU

CU-BOULDER, SPRING 2011

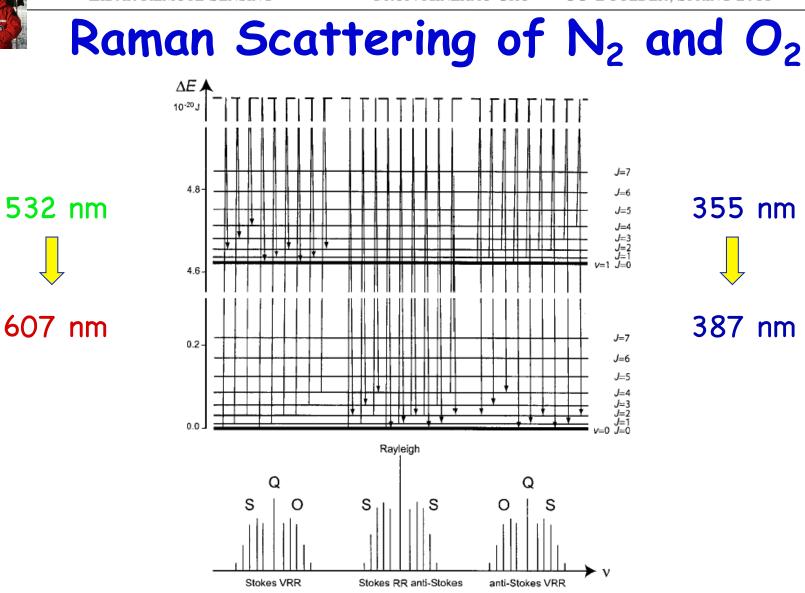


Fig. 9.1. Vibration–rotation energy levels of the N_2 molecule, Raman transitions, and resulting spectrum.

Raman shift amount is independent of incident laser wavelength¹¹

Raman Integration Lidar

□ In the lower atmosphere region where aerosols present Rayleigh scattering returns are contaminated by aerosol Mie scattering, so cannot be used in the integration technique.

□ However, Raman scattering only comes from molecules, thus, free of aerosol influence. By detecting Raman scattering at a different wavelength (e.g., 607 nm compared to 532 nm), Mie and Rayleigh contamination are avoided.

$$N_{S}(\lambda,\lambda_{L},z) = \left(\frac{P_{L}(\lambda_{L})\Delta t}{hc/\lambda_{L}}\right) \left(\sigma_{Raman}(\lambda_{L},\lambda,z)n_{N_{2}}(z)\Delta z\right) \\ \times \left(\frac{A}{z^{2}}\right) T_{a}(\lambda_{L},z)T_{a}(\lambda,z) \left(\eta(\lambda_{L})\eta(\lambda)G(z)\right) + N_{B}$$

Lidar Backscatter Ratio ⇒ Relative Density ⇒ Temperature (at different altitudes) (Raman)

Rayleigh-Raman Integration Lidar

[Keckhut et al., 1990]

TEMPERATURE (KELVIN)

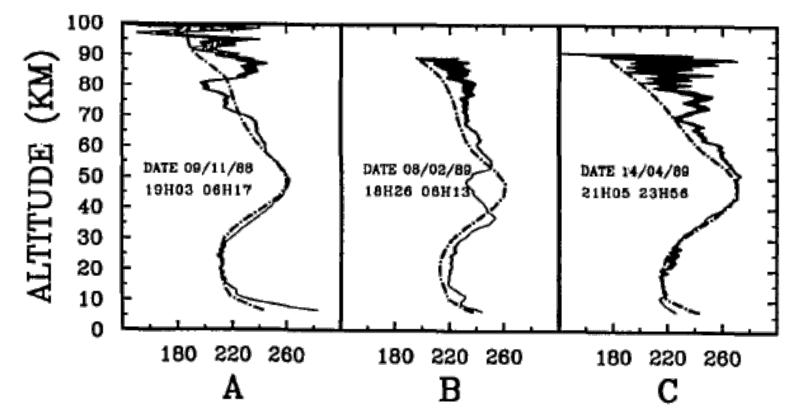
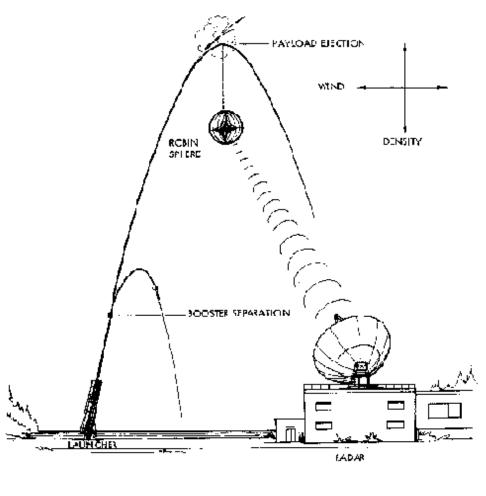
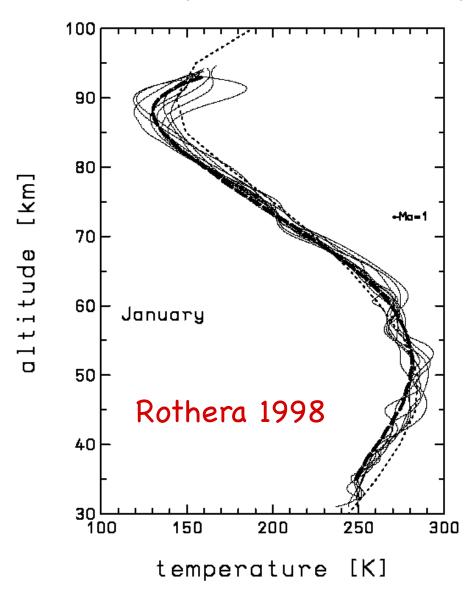



Fig. 2. Lidar temperature profiles compared with the corresponding CIRA 1988 model (dashed lines): (A) 09/11/88, 19H03 06H17; (B) 08/02/89, 18H26 06H13; (C) 14/04/89, 21H05 23H56.

Inflatable Falling Sphere

Bollerman and Walker, 1983

SPACE DATA CORPORATION


Rocket transports a metal sphere to upper atmosphere After release the sphere inflates to 1-m metal sphere falling through atmosphere High-precision radar tracks sphere position & acceleration Input to the equation of motion of the falling sphere to derive atmosphere density

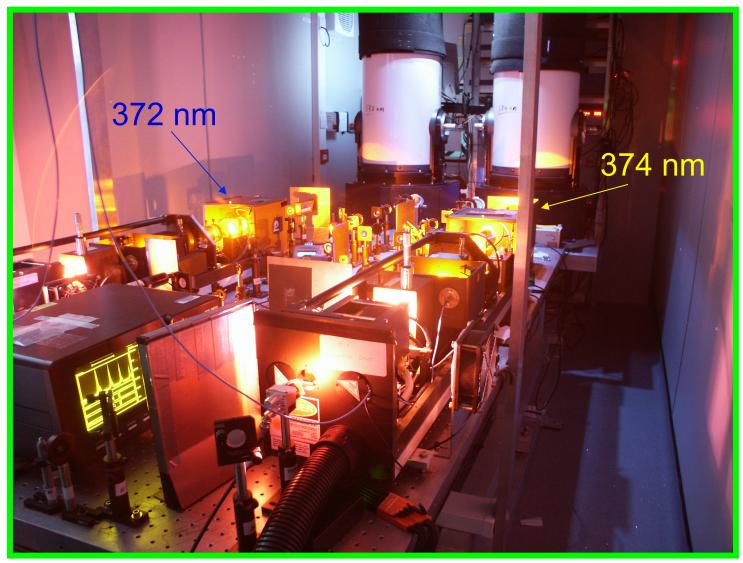
Integration from top to derive temperature from density data

[Schmidlin et al., JGR, 96(D12), 22673-22682, 1991] ¹⁴

Falling Sphere Temperature

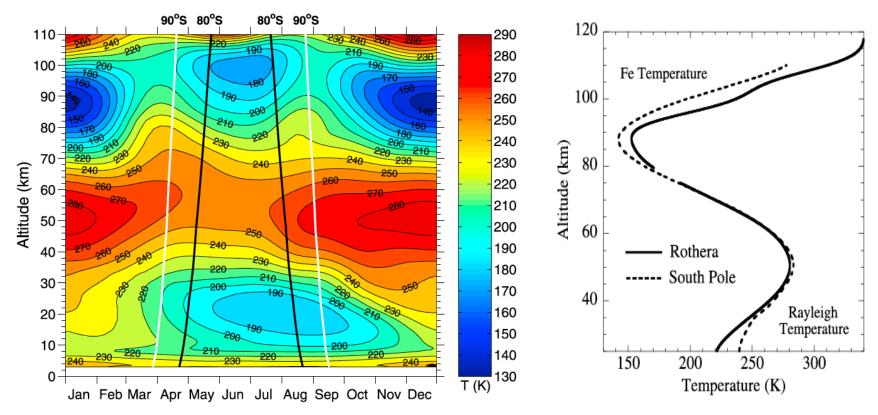
Typical Rayleigh/Raman temperature lidar utilizes the commercial Nd:YAG laser system as it provides robust laser power and operation (usually broadband).

Any (short wavelength) resonance fluorescence lidar, like Fe Boltzmann lidar, also functions as a Rayleigh lidar in the region free of aerosol and fluorescence (about 30–75 km).


Rayleigh scattering is inversely proportion to the 4th power of wavelength. So the shorter the wavelength, the stronger the Rayleigh scattering, as long as atmosphere absorption is not too strong.

Operating in deep Fraunhofer lines will benefit daytime operation to reduce the solar background.

Availability and robustness of laser systems are another consideration in lidar design.



Fe Boltzmann/Rayleigh Lidar

Sample Results from Fe Boltzmann/Rayleigh Lidar

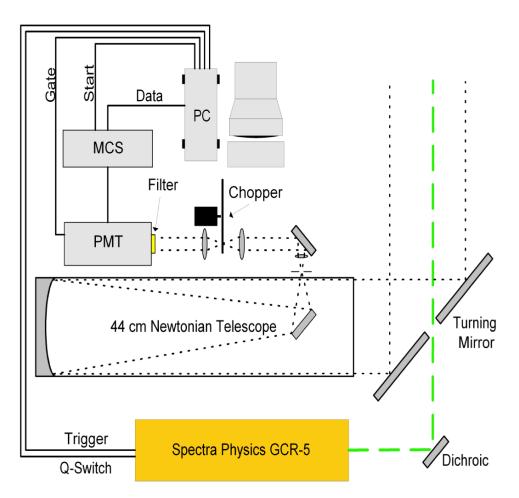
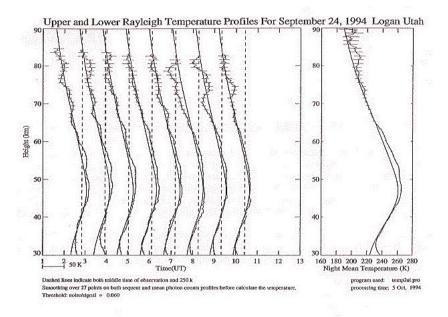
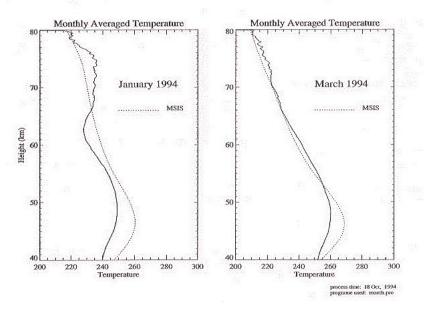


Figure 4. The observed weekly mean temperature structure of the atmosphere above South Pole (UISP-02) plotted from 3 to 110 km. Polar nights (24 h darkness) occur between the white curves at 90°S and between the black curves at 80°S. The vertical resolution is 500 m.

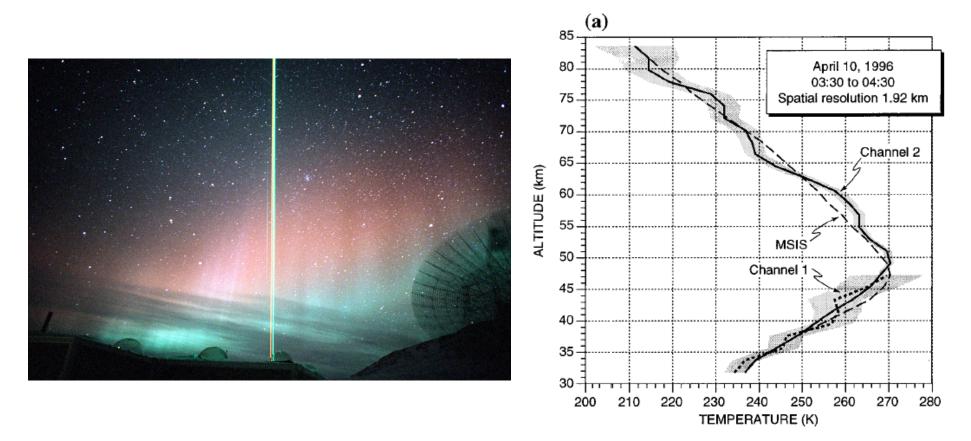


Doubled Nd:YAG laser at 532 nm (630 mJ/pulse, 30 Hz)



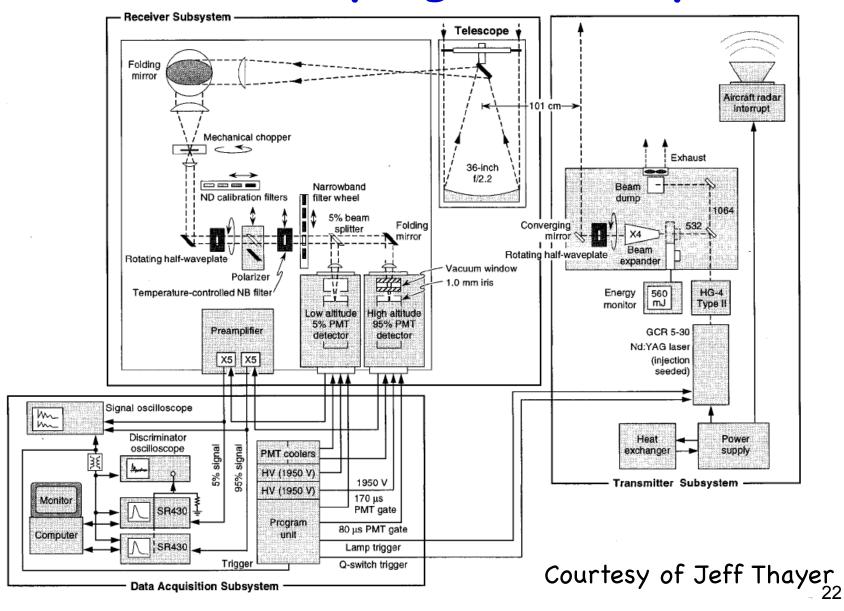
http://www.usu.edu/alo/aboutlidar.htm

Sample Results from USU Rayleigh Lidar



Prof. Vincent Wickwar & Josh Herron @ USU

http://www.usu.edu/alo/aboutlidar.htm



Greenland Rayleigh Lidar and Sample Results

Courtesy of Jeff Thayer

Greenland Rayleigh Lidar System

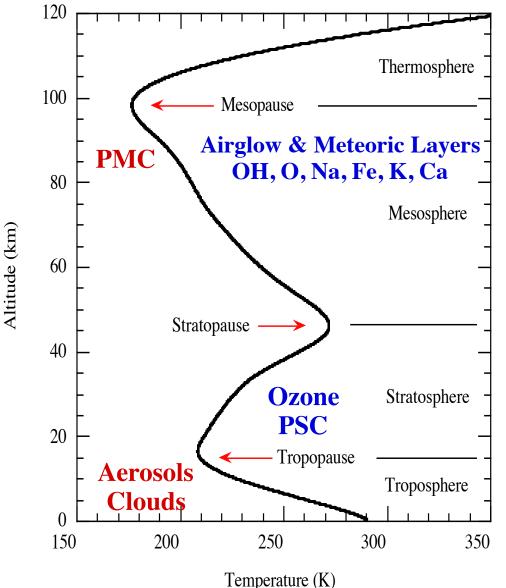
Summary

□ Integration technique relies on the assumptions of hydrostatic equilibrium and ideal gas law in the atmosphere interested. It involves integrating the atmosphere relative density profile downward using a starting temperature (usually coming from a model or independent measurement) at an upper altitude.

□ The key is to somehow measure the atmosphere relative number density with high precision and unbiased.

□ Integration technique started with cw searchlight in 1950s, dramatically enhanced by high-power pulsed Rayleigh lidar in 1980s for region free of aerosols, further developed by vibrational Raman lidar in 1990s for region with aerosols.

Inflatable falling sphere released by rocket is another perfect example for integration temperature technique.


ALL AND

PROF. XINZHAO CHU CU-BOULDER, SPRING 2011

Comparison of Temperature Technologies

Technique	Lidars	Applications
Doppler Technique: temperature dependence of Doppler broadening (1 time Doppler shift and Doppler broadening for single absorption or emission process) (2 times Doppler shift and Doppler broadening for Rayleigh scattering)	Resonance fluorescence Doppler Lidar: Doppler broadening and Doppler shift of resonance fluorescence absorption cross- section (scan and ratio techs)	Mesosphere and Lower Thermosphere temperature and wind (75-120 km)
	Rayleigh Doppler Lidar : Doppler broadening of molecular scattering	Lower mesosphere, stratosphere and troposphere temperature and wind (up to 60 km)
	High-Spectral-Resolution Lidar: Doppler broadening of molecular scattering, ratio of two signals	Stratosphere and troposphere temperature and wind (up to 30 km)
Boltzmann Technique: temperature dependence of population ratio	Resonance fluorescence Boltzmann Temperature Lidar: population ratio on the lowest two ground states	Mesosphere and Lower Thermosphere temperature (75-120 km)
	Rotation Raman Temperature Lidar: ratio of two Raman line intensities and population on different initial energy states	Troposphere and stratosphere temperature
Integration Technique: hydrostatic equilibrium and ideal gas law	Rayleigh or Raman Integration Temp Lidar: atmospheric density ratio to temperature, integration from upper level	Stratosphere and mesosphere temperature (30-90 km) Troposphere temperature (< 30 km)
DIAL	Differential Absorption Lidar: Temp- dependence of line strength and lineshape	Boundary layer temperature 24

Cemperature Lidar Technologies

75-120km: resonance fluorescence Doppler technique (Na, K, Fe) & Boltzmann technique (Fe, OH, O₂)

30-90km: Rayleigh
integration technique &
Rayleigh Doppler technique

Below 30 km: scattering Doppler technique, HSRL, and Raman technique (Boltzmann and integration)

Boundary layer: DIAL, HSRL, Rotational Raman

Summary

- □ Temperature-dependent and temperature-sensitive effects and phenomena are utilized in the temperature lidars to measure atmosphere temperatures.
- Resonance Fluorescence Doppler Technique
 - (Na, K, and Fe Doppler lidars)
- Boltzmann Technique
 - (Fe and N₂⁺ Boltzmann lidars, imagers, Bomem mappers)
- Integration Technique
 - (searchlight, Rayleigh & vibrational Raman lidars, falling sphere)
- Rayleigh Doppler Technique
 - (Rayleigh Doppler lidar and high-spectral-resolution Lidar)
- Rotational Raman Technique (Rotational Raman lidar)
- Differential Absorption Technique (DIAL lidar)