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What is Polarization?
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What is Polarization?

Linear Polarization

Circular Polarization

Elliptical Polarization
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Everything Else
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Stokes Vectors

S=[
I
Q
U
V
]

Total Intensity

Horizontal (+1) and Vertical (-1) Intensity

+45º (+1) and -45º (-1) Intensity

Left Hand Circular (+1) and Right Hand 
Circular (-1) Intensity
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Stokes Vectors

Degree of Polarization (DOP)

DOP=Q2U 2V 2

I
≤1

Unpolarized Light

S unpol=[
1
0
0
0
]
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Mueller Matrices

[
1
1
0
0
]=[

0.5 0.5 0 0
0.5 0.5 0 0
0 0 0 0
0 0 0 0

][
1
1
0
0
]

[
0
0
0
0
]=[

0.5 0.5 0 0
0.5 0.5 0 0
0 0 0 0
0 0 0 0

][
1
−1
0
0
]

4x4 Matrix that describes polarization optics

i.e.  Horizontal Polarizer

[
0.5
0.5
0
0
]=[

0.5 0.5 0 0
0.5 0.5 0 0
0 0 0 0
0 0 0 0

] [
1
0
0
0
]

Horizontal Polarized Input

Vertical Polarized Input Unpolarized Input

Three types of Polarization Matrices
Diattenuator – Polarization dependent efficiency
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Mueller Matrices

[
1
1
0
0
]=[

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

][
1
1
0
0
]

[
1
0
0
−1

]=[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

] [
1
0
1
0
]

i.e.  Horizontal Quarter Wave Plate

[
1
0
0
0
]=[

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

] [
1
0
0
0
]

Horizontal Polarized Input

45° Polarized Input Unpolarized Input

Three types of Polarization Matrices
Retarder – Polarization dependent phase shift
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Mueller Matrices

[
1
0
0
0
]=[

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

][
1
1
0
0
]

i.e.  Total Depolarizer

Horizontal Polarized Input

Three types of Polarization Matrices
Depolarizer – reduces DOP
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N∥

N ⊥

F

S TX

S RX

P∥ /P⊥

Stokes Vector Lidar Equation (SVLE) 

o=[1 0 0 0]

N m z =o Pm
S RX  z 

Measured Intensity/Photon Counts

Scatterer

Optical System

Transmission

S RX  z =M RX[G z z
A
z2 Tatm  z Fk i ,k s , z Tatm z MTX

S TXS B]

All matrices are Mueller matrices that can be 
analyzed using Lu-Chipman Decomposition
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Phase Matrix Characterization
Requires we transmit 4 different polarizations and measure the resulting 
Stokes vectors to obtain the full matrix

•Horizontal
•Vertical
•45º
•LHC

Fk i ,−k i , z =[ C 1
C 2

C 3
C 4 ]

C 1=0.5S RXhS RXv 

C 2=0.5S RXh−S RXv 

C 3=S RX45−C 1

C 4=S RXlhc−C 1
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Stokes Vector Measurement
Each Stokes vector measurement requires 6 polarization measurements

S=[
I
Q
U
V
]=[

N HNV

N H−NV

N45−N−45

N LHC−N RHC
]

24 Intensity/Photon Count measurements are required to 
fully characterized the scattering phase matrix!
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Fk i ,−k i , z =[
1 0 0 0
0 1−d 0 0
0 0 d−1 0
0 0 0 2d−1

]

Scattering Phase Matrix

Backscattering matrix of randomly oriented scatterers
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Conventional Polarization Lidar Technique

[
1

1−d
0
0

]=[
1 0 0 0
0 1−d 0 0
0 0 d−1 0
0 0 0 2d−1

] [
1
1
0
0
]

N∥

N ⊥

F

S TX

S RX

P∥ /P⊥

N∥=o [
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

][
1

1−d
0
0

]=1−
d
2

N ⊥=o [
1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

] [
1

1−d
0
0

]=d
2
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Conventional Polarization Lidar Technique

N∥

N ⊥

F

S TX

S RX

P∥ /P⊥
d=

N ⊥

N ⊥N∥

d=
2N ⊥

N ⊥N∥

d=
4N ⊥

N ⊥N∥3−cos4 

Linear:

Circular:

Arbitrary:

•No matter what polarization is used, the matrix can be characterized
•Results are independent of the system's polarization of operation
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Information in Depolarization

•Spherical scatterers do not depolarize (d = 0)
•Depolarization provides distinction in particle

•Shape
•Index of refraction
•Size

•This is used for
•Particle shape, size index, density retrievals
•Thermodynamic phase of water (ice or liquid)
•Polar stratospheric cloud characterization
•Identification of dust, volcanic ash and other particulate 
constituents of the atmosphere
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Polar Mesospheric Cloud Particles

•Form in the Mesopause at an 
altitude of 83 km
•Particle shape impacts

•Aerodynamic Properties
•Surface Area-to-Volume ratio
•Growth and Sublimation rates
•Area for heterogeneous 
chemistry

M. Hayman, J.P. Thayer, "Lidar Polarization Measurements 
of PMCs," J. Atmos. Sol. Terr. Phys. 2010.

G. Baumgarten, K.H. Fricke, "Investigation of the 
shape of noctilucent cloud particles by polarization 
lidar technique" Geophys. Res. Lett.. 2002.

PMC particles are small compared to 
optical wavelengths, so d is expected 
to be less than 0.03
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Lidar Depolarization 
Data

Snow/Ice 
Precipitation

Seeder-Feeder 
Cloud

Liquid Layer

Provides information about 
cloud phase
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Lidar Depolarization Data

Polar Stratospheric Clouds
•Type I: nitric acid trihydrate (NAT)

•Ia:  Small spherical particles 
•Ib:  Larger aspherical particles

•Type II:  Water

Type Ia

Type Ib

Ice clouds
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Conventional Polarization Lidar Terminology

≡
⊥

∥

=
N ⊥

N∥

Polarization Ratio

N∥

N ⊥

NTX

⊥ /∥

Linear Circular Arbitrary

L=
d

2−d
C=

d
1−d A=

d 3−cos 4
4−d 3−cos 4

Conventionally polarization data is reported as 
the ratio of the parallel and perpendicular 
channels

The data product is dependent on the system's 
polarization mode of operation
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System Corrections
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•Mirrors, beamsplitters and filters can change 
the received polarization state
•Full system characterization performed in 
operation
•Apply Lu-Chipman Mueller Decomposition

•Retarding effects are canceled with two 
quarter wave plates and one half wave 
plate

M. Hayman, J.P. Thayer, "Lidar Polarization Measurements of PMCs," J. Atmos. Sol. Terr. Phys. 2010.

MRX=M R M MD MR
−1S Sca S RX

Compensator



Calibration Altitude

Analysis Altitude=
1−d  zc 

1−dM

d atm z=1−
1−d  z 



d  z =1− [1−d atm z  ]

All of the following error sources can be folded 
into a single term:

•Partial Polarization of Transmitter
•Polarization Misalignment
•Receiver Depolarization
•Receiver Retardance

Software Correction

A calibration altitude is used to solve for 
the error term.

The error term is then used to produce an 
estimate of depolarization for all other altitudes
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Software Correction

M. Hayman, J.P. Thayer, "Explicit Description of Polarization Coupling in Lidar Applications," Opt. Lett. 34  pp. 611-613 (2009).
M. Hayman, J.P. Thayer, "Lidar Polarization Measurements of PMCs," J. Atmos. Sol. Terr. Phys. 2010.
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Polarization Ratio Polarization Ratio

0.3º Tilt 3.0º Tilt

Noel, Chepfer, J. Geophys. Res., D00H23, 115 (2010).

Detection of Oriented Ice Crystals

Oriented Ice Crystals:  
Significant impact on 
radiative transfer.

CALIOP Lidar on CALIPSO

•Specular scattering prevented other simultaneous cloud/aerosol studies
•Oriented scatterer detection lasted only 18 months
•Oriented ice crystal studies need backscatter signals in the same dynamic 
range as other clouds and aerosols
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Scattering Phase Matrix:

Fk i ,−k i , z =[
f 11 f 12 0 0
f 12 f 22 0 0
0 0 f 33 f 34

0 0 −f 34 f 44
]

Fk i ,−k i , z =[
1 0 0 0
0 1−d 0 0
0 0 d−1 0
0 0 0 2d−1

]
Randomly Oriented

Oriented

Linear Diattenuation
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Cloud Aerosol Polarization And Backscatter Lidar
(CAPABL)

•Deployed to Summit Camp, 
Greenland March 2010
•Transmits a single linear 
polarization
•Detects Three Polarizations using 
liquid crystal variable retarder

•Parallel
•Perpendicular
•45 degrees

•Two detectors for low and high 
altitude returns
•30 m altitude resolution
•5 sec temporal resolution
•24/7 Operations with remote 
access and control
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CAPABL Measurement Technique

[
f 11 f 12 0 0
f 12 f 22 0 0
0 0 f 33 f 34

0 0 −f 34 f 44
]Dq=

2N45

N ⊥N∥

−1

Dq=

f 12 sinf
1
2
 f 22f 33 sin4f

f 11f 12cos 2f

Dq=
f 12

f 11

f=


4
choose

N∥−N ⊥

N ⊥N∥

=
f 33

f 11
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Cloud Aerosol Polarization And Backscatter Lidar

•Deployed in March 2010
•Over a year of diattenuation data with instrument pointing zenith

•Determine potential for false positives

CAPABL will be tilted this month to begin a campaign to 
identify oriented ice crystals
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Conclusion

•Polarization lidar should be described in terms of Stokes vectors and 
Mueller matrices.  

•Results should be reported in terms of scattering matrix parameters
•Mueller matrix descriptions of the instrument descriptions offer 
better solutions for system error in polarization measurements.

•Polarization can be used to study a number of particle properties 
relating to shape, index of refraction and size.
•Detection of linear diattenuation provides a means of identifying 
horizontally oriented ice crystals while providing backscatter signals in 
the same dynamic range as other clouds and aerosols. 
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