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4.1 Introduction | 5

Atmospheric aerosols play an important role in many atmospheric
processes. Although only a minor constituent of the atmosphere, they
have appreciable influence on the Earth’s radiation budget, air qual-
ity and visibility, clouds, precipitation, and chemical processes in
the troposphere and stratosphere. The occurrence, residence time,
physical properties, chemical composition, and corresponding complex-
refractive-index characteristics of the particles, as well as the resulting
climate-relevant optical properties are subject to large diversity espe-
cially in the troposphere because of widely different sources and
meteorological processes. Therefore, vertically resolved measurements
of physical and optical properties of particles such as the particle surface-
area concentration, volume and mass concentrations, mean particle size,
and the volume extinction coefficient are of great interest. Routine (long-
term), height-resolved observations of these parameters can only be
carried out with lidar. -

Commonly, aerosols are described in terms of aerosol types in
climate models. These aerosol types are deﬁneql as internal or external
mixtures of different components, and each component has distinc-
tive properties. The water-insoluble part of aerosol particles con-
sists mostly of soil particles with some amount of organic material.
The water-soluble part originates from gas-to-particle conversion. It
consists of various kinds of sulfates, nitrates, and other water-
soluble substances, which also include organics. Soor represents
absorbing black carbon. Sea-salt particles represent the various kinds
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of salt contained in seawater. Mineral particles describe desert dust
produced in arid regions. The mineral-transported component describes
desert dust that is transported over long distances, which leads to
the depletion of large particles. Sulfate droplets are used to describe
sulfate found in Antarctic aerosol and the stratospheric background
aerosol.

Table 4.1 lists some characteristics of important aerosol types used
in climate modeling. These aerosol types differ in their relative conlri-
bution of the various aerosol components. A detailed overview can be
found elsewhere [1, 3]. On the one hand, these types span the average
conditions; on the other hand, they take account of extreme conditions
for sensitivity studies. It has to be observed that actual measurements
may show aerosol properties significantly different from these aerosol
types.

The three different types of continental aerosols differ in their amount
of soot, which is considered as a parameter describing the influence
of anthropogenic activities. Furthermore, the overall concentration of
particles strongly increases from continental clean to continental pol-
luted conditions. The urban aerosol describes strong pollution in urban
areas. It has the highest concentration of particles, in particular, that

Table 4.1. Properties of aerosol types [1]¢

N Teff ssa g a d
Aerosol type (cm_3) (pm) (0.55pm) (0.55 pm) (0.35-0.55 pm) (0.55-0.8 jum)
Cont. clean 2600 0.247 0972 0.709 1.10 1.42
Cont. average 15,300 0.204  0.925 0.703 1.11 142
Cont. polluted 50,000 0.150 0.892 0.698 1.13 1.45
Urban 158,000 0.139 0.817 0.689 1.14 043
Desert 2300 1.488 0.888 0.729 0.20 0.17
Marit. clean 1520 0445 0.997 0.772 0.12 0.08
Marit. polluted 9000 0.252 0.975 0.756 0.41 0.35
Marit. tropical 600 0.479 0.998 0.774 0.07 0.04
Aurctic 6600 0.120 0.887 0.721 0.85 0.89
Antarctic 43 0.260 1.000 0.784 0.34 0.73
Stratosphere
(12-35km) 3 0.243  1.000 0.784 0.74 1.14

¢Number concentration is denoted by N. The effective radius regr describes the mean size of the
particle ensemble. The single-scattering albedo ssa is defined as the ratio of total scattering to
extinction of the investigated particle ensemble. The asymmetry parameter g is a measure of light
scattered toward the forward direction compared with the light scattered toward the back direction.
The Angstrom exponent d [2] describes the spectral slope of the opticat coefficients. All num-
bers hold for a relative humidity of 80%. Effective radius is calculated for 50% relative humidity.
A further discussion of some of the parameters is given in Section 4.3.
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of soot. Desert aerosol describes the conditions over desert regions
without distinguishing between local properties. There are three types
of marine aerosols, which contain a different concentration of sea salt
depending on the actual wind speed, and soot, which reflects the anthro-
pogenic influence on the maritime environment. Arctic aerosol consists
of particles transported from the mid-latitude continental areas and
therefore contains soot. The Antarctic aerosol type exhibits a mix-
ture of mostly sulfate droplets with some amount of sea salt and
mineral particles. The stratospheric aerosol is given for background
conditions.

Elastic-backscatter lidars have extensively been used to investi-
gate clouds and aerosol layers since the early 1960s when Fiocco and
Grams [4] reported the first lidar-derived stratosphenc aerosol profiles.
Only in recent years, however, has significant progress been made toward
a quantitative study of atmospheric aerosol properties solely based on
lidar. Aerosol lidars were involved in large, integrated aerosol field
campaigns such as the Tropospheric Aerosol Radiative Forcing Obser-
vational Experiment (J. Geophys. Res. 104, D2, 1999 and 105, DS,
2000), the Aerosol Characterization Experiment 2 (Tellus 52B, No.
2, 2000), the Indian Ocean Experiment (J. Geophys. Res. 106, D22,
2001 and 107, D19, 2002), the Lindenberg Aerosol Characterization
Experiment (J. Geophys. Res. 107, D21, 2002), and the Asian Pacific
Regional Aerosol Characterization Experiment (J. Geophys. Res. 108,
D23, 2003 and 109, D19, 2004). These so-called aerosol closure experi-
ments were conducted to study the impact of anthropogenic particles on
the climate system. Networks of aerosol lidars such as the Asian Dust
Network {5] and the European Aerosol Research Lidar Network [6] were
established to investigate the horizontal and vertical distribution of nat-
ural and anthropogenic aerosol plumes in a coherent way on a regional
to continental scale. The US National Aeronautics & Space Administra-
tion (NASA) and, in cooperation, the European Space Agency (ESA)
and the National Space Development Agency of Japan (NASDA) will
launch satellite-borne lidars for a multlyear“mapplng of global aerosol
distributions and for the characterization of the long-range transport of
particles. .

In this chapter we review and critically discuss the two most important
methods for the determination of optical particle parameters from lidar
observations and the techniques that are used to retrieve physical prop-
erties of tropospheric and stratospheric aerosols. In Subsection 4.2.1 the
technique is explained that is taken to compute the particle backscatter
coefficient (scattering coefficient at 180°, normalized to the unit solid



108 A. Ansmann and D. Miiller

angle) from return signals measured with the widely used elastic or
standard backscatter lidar [7-10]. Elastic-backscatter lidars detect the
total atmospheric backscatter without separation of particle and molec-
ular contributions to the backscattered signal. The main drawback of
this method is that trustworthy profiles of the climate-relevant volume
extinction coefficient of the particles cannot be obtained. The extinétion
profile must be estimated from the determined backscatter-coefficient
profile.

By applying the so-called Raman-lidar technique [11, 12] or the
high spectral resolution lidar (HSRL) method [13-15] the profile of the
particle extinction coefficient can directly be determined. In addition,
the profile of the backscatter coefficient is obtained. An aerosol Raman
lidar or an HSRL measures two signal profiles, which permit the sepa-
ration of particle and molecular backscatter contributions. This method
is described in Subsection 4.2.2.

For completeness, the scanning or multiangle lidar technique [16-19]
is another technique to derive vertical profiles of the particle extinction
coefficient. The most critical requirement here is the need for horizontally
homogeneous particle backscattering and extinction at all measurement
heights. This condition is often not fulfilled, at least not in the convective
boundary layer.

Simultaneously measured extinction and backscatter coefficient
profiles at several wavelengths between 300 and 1100 nm are the fun-
damental prerequisite for a successful, accurate retrieval of physical
properties of tropospheric particles from the optical ones [20]. Tropo-
spheric aerosols over the continents often contain a complex mixture of
natural (marine and dust particles) and anthropogenic particles (mainly
sulfate and soot particles) so that the refractive-index characteristics
are unknown. Furthermore, because of the great variability of sources
and because of coagulation, mixing, transport, and removal processes,
the size distribution that covers the particle diameter range from a few
nanometers to several micrometers often shows a complex, multimodal
shape. The basic methodology of the inversion technique applied to
tropospheric lidar observations is explained in Subsection 4.3.1.

Stratospheric aerosol conditions are comparatively simple. As a
consequence, much simpler retrieval schemes can be applied here
to determine the microphysical properties from lidar data. Sulfuric-
acid/water droplets form the stratospheric aerosol layer. For these
particles the refractive index is accurately known. The size distribution
can well be described by monomodal logarithmic-normal distributions
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under background conditions. A second mode is present during several
years after major volcanic eruptions. Temporal changes in the size cha.r—
acteristics can be considered to be very slow compared with tropospheric
variations. Lidar methods for the retrieval of microphysical properties
of stratospheric particles are discussed in Subsection 4.3.2. A few meas-
urement examples illustrating the potential of modern aerosol lidars are
presented in Section 4.4.

4.2 Determination of Optical Parameters of
Atmospheric Particles
4.2.1 Elastic-Backscatter Liglar

The lidar equation for return signals due to elastical backscatter by air
molecules and acrosol particles can, in its simplest forth, be written as 7]

R
P(R) = E;ZL O(R)B(R) exp [—2 / a(r) dr]. 4.1)
0
P(R) is the signal owing to Rayleigh and particle scattering receivgd
from distance R, Ejy is the transmitted laser pulse energy, ny, contains
lidar parameters describing the efficiencies of the optical and detec-
tion units, and O(R) describes the overlap between the outgoing laser
beam and the receiver field of view. S(R) (in km™!sr™!) and a(R) (in
km~!) are the coefficients for backscattering and extinction, respectively.
Backscattering and extinction are both caused by particles (index aer)
and molecules (index mol):

,B(R) = ,Baer(R) + ,Bmol(R)a (4-2)
a(R) = ttger(R) + ool (R). 4.3)

Molecular absorption effects are ignored. pTh@se effects have to be
removed from the measured signals before lapplying the methods

presented in this chapter. )
Equations (4.1)—(4.3) can be summarized to

R
S(R) = EgnilBaer(R) + Bma(R) ] exp [—2/ [Gtacr () 4 Xmot (7)] dr}
0
(4.4)
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with the range-corrected lidar signal S(R) = R?>P(R). The overlap is
assumed to be complete [O(R) = 1], i.e., the minimum distance R, at
which measurements can be made may be defined by O(R) < 1for R <
Ruin. The molecular scattering properties, Bmo(R) and oy (R), can be
determined from the best available meteorological data of temperature
and pressure or approximated from appropriate standard atmospheres so
that only the aerosol scattering and absorption properties, B, (R) and
Oaer (R), remain to be determined.

In the next step we introduce the particle extinction-to-backscatter
ratio (lidar ratio)

aer (R)
Laer(R) = 4.5)
Bucx (R)
in analogy to the molecular lidar ratio
Hmol (R ) 87
= = —sI. (4.6)
" Bua(R) 3

In contrast to the molecular lidar ratio, the particle lidar ratio is range-
dependent because it depends on the size distribution, shape, and
chemical composition of the particles.

In addition, we introduce the term

Y(R) = Laet(R)[Baer (R) + Bmot (R)]- 4.7)

In Sasano et al. [10] Y (R) is expressed as a function of ¢ae (R).

~ However, we prefer Eq. (4.7) because the primary information in the
measured elastic lidar returns [cf. Eq. (4.1)] is the backscatter coefficient
under typical tropospheric conditions with particle vertical optical depth
of <0.3 in the visible spectrum around 550 nm. Under these conditions
only the backscatter coefficient can be derived with good accuracy from
the elastic backscatter signal.

After substituting o, (R) and oo (R) in Eq. (4.4) with the expres-

sions (4.5) and (4.6) and inserting Y (R) from Eq. (4.7), the resulting
equation can be written as

R
S(R)Laer(R) exp {_2 o [Laer(r) - Lmol] ,Bmol(r) d}"}

R
= EonLY (R)exp [——2/ Y(r) dr:l .o (4.8)
0
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Taking the logarithms of both sides of Eq. (4.8) and differentiating them
with respect to R gives

dln (S(R)Laer(R) exp {_2 J L aex () = Linot] Brnor () dr})
dRr

1 dY(R)
=" — 2V (R). . 4.9
YR dR (R) (4.9)
Finally, we solve Eq. (4.9), known as the Bernoulli equation, for the
boundary condition
Y(RO) = Laer(RO)[,Baer(RO) + ,Bmol(RO)J ‘ (4-10)

to obtain [10}:
IBaer(R) + ﬂmoI(R) ; £

S(R)exp {“"2 flﬁ) [Laer(r) = Linot] Bmot (r) dl’} h
= , Wit

S(Ro) /R
=2 Loer(7)S#)T (1, Ry) d
Baer (Ro) + Bmol (Ro) Ro (r)S(r)T (r, Ry) dr

411
T, Ro) = CXP{—Z/ [Laer(r/) - Lmol] IBmol(r/) dr,} .
Ro

The profile of the particle extinction coefficient can be estimated from
the solution B, (R) by

aaer(R) - Laer(R),Baer(R) . (412)

Equation (4.11) can, in principle, be integrated by starting from the
reference range Ry, which may be either the near end (R > Ry, for-
ward integration) or the remote end (R < Ry, backward integration)
of the measuring range. Numerical stability, which is not to be mis-
taken for accuracy, is, however, given only in the backward integration
case [8]. This fundamental formalism used to aﬁalyze elastic-backscatter
lidar data originates from Hitschfeld dnd Bordan’s [21] radar applica-
tion. However, the technique is often referred to as the Klett method, as
Klett [8] introduced the backward integration scheme and restated in this
way the Bernoulli solution in a very convenient form for the analysis of
lidar observations.

The reference range Ry in Eq. (4.11) is usually chosen such that
at Ry the particle backscatter coefficient is negligible compared to the
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known molecular backscatter value. Such clear-air conditions are nor-
mally given in the upper troposphere for laser wavelengths <700 nm.
Note that Rayleigh scattering is proportional to A~* and thus strongly
depends on the wavelength of the transmitted laser pulse.

The most critical input parameter in the Klett method is the particle
lidar ratio L,e (R). As mentioned, this quantity depends on the micro-
physical, chemical, and morphological properties of the particles. All
of these properties, in turn, depend on relative humidity. The lidar ratio
can vary strongly with height, especially when marine, anthropogenic
(urban, biomass burning), and/or desert dust particles or mixtures of
these basic aerosol types are present in layers above each other [22,
23]. Typical lidar ratios of the mentioned different aerosol types as mea-
sured with our Raman lidar at 532 nm are given in Table 4.2. Variations
between about 20 and 100 st make it practically impossible to estimate
trustworthy extinction profiles from Eq. (4.12). Even in the well-mixed
layer, the lidar ratio is not constant with height because relative humid-
ity increases with height. In cases with accompanying sun photometer
observations that deliver the optical depth (integral over the extinction
coefficient profile), a column-related lidar ratio can be estimated from
the ratio of the optical depth to the column-integrated backscatter coeffi-
cient determined from Eq. (4.11). This lidar ratio can only be considered
as a first guess, the true lidar ratio profile remains unknown.

A long-lasting discussion of achievements and limitations of the lidar
method applied may be found in the literature [7-10, 12, 24-29]. The pro-
cedure, with all its subsequent modifications and improvements, simply
suffers from the fact that two physical quantities, the particle backscat-
ter coefficient and the particle extinction coefficient, must be determined
from only one measured quantity, the elastic lidar return.

4.2.2 Raman Lidar and HSRL

This unsatisfactory situation improved significantly when the first
Raman lidar experiments demonstrated that accurate vertical profiling

Table 4.2. Typical lidar ratios for different aerosol types at 532
nm wavelength determined with a Raman lidar

Marine particles {22, 30} 20-35 sr
Saharan dust [31] 50-80 sr
Less absorbing urban particles [22, 30] 35-70 sr

Absorbing particles from biomass burning [30; 32]  70-100 sr
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of the particle extinction coefficient throughout the entire troposphere
is possible [11, 12]. After the Pinatubo eruption in 1991 it was imme-
diately shown that even at stratospheric heights profiles of the volume
scattering coefficient can easily be obtained with ground-based Raman
lidars [33-36]. First attempts to infer particle extinction properties from
Raman signal profiles were reported by Gerry and Leonard [37]. First
accurate horizontal transmission measurements with Raman lidar were
done by Leonard and Caputo [38].

Two types of lidars for extinction profiling are available.
The mentioned Raman lidar measures lidar return signals elasti-
cally backscattered by air molecules and particles and inelastically
(Raman) backscattered by nitrogen and/or oxygen molecules (cf.
Chapter 9). C

High spectral resolution lidar (HSRL) (cf.Chapter 5) is the second
type of lidar that can be used for the determination of aerosol transmission
and light-extinction properties. This lidar relies on the differences in
spectral distribution of light elastically backscattered by particles and
air molecules. The spectral width of Rayleigh-backscattered photons is
increased due to Doppler shifts caused by the thermal motion of the
molecules. The thermal motion of aerosol and cloud particles is much
slower so their backscatter spectrum remains nearly unchanged. Here,
the molecular backscatter channel measures Rayleigh backscattering by
blocking the narrow aerosol peak, e.g., by use of an atomic-vapor filter.
A second channel may detect the total backscatter or just the central
aerosol peak. '

Whereas the Rayleigh lidar is operational at day and night, the Raman
lidar is mainly used during nighttime, i.e., in the absence of the strong
daylight sky background. The strength of Raman signals is a factor of 20
(rotational Raman lines) to 500 (vibration-rotational Raman lines) lower

-than the one of Rayleigh signals. However, by applying narrow-bandpass

filters or a Fabry-Perot interferometer [39] Raman lidar observations
are now also possible at daytime with appropriate temporal and spatial
resolution [40, 41]. Ground-based solar-blind lidars operating at laser
wavelengths well below 300 nm are not appropriate for measurements
in the upper troposphere because of strong absorption of laser radiation
by ozone.

- The determination of the particle extinction coefficient from molecu-
lar backscatter signals is rather straightforward. Lidar-ratio assumptions
or other critical assumptions are not needed. The advantage of the Raman
lidar and the HSRL technique over conventional elastic-backscatter lidar



114 A. Ansmann and D. Miiller

is already obvious from the respective lidar equation for the molecular
backscatter signal,

Eon)\}{a
2

P(R, Ara) = O(R, hra) Bra(R, o)

R
X exp {——/ [ (r, Ag) + (7, Ara)] dr} . (4.13)
0

The coefficient fr, denotes Rayleigh backscattering in the HSRL and
Raman backscattering in the Raman case. Particle backscattering does
not appear in Eq. (4.13). The only particle-scattering effect on the signal
strength is attenuation. (R, A¢) describes the extinction on the way up
to the backscatter region, «(R, Ag,) the extinction on the way back to
the lidar. For the Rayleigh or the rotational Raman case Ag, = Ao can
be used. However, in the case of a vibration-rotational Raman signal the
shift of the wavelength from A before to Ay after the scattering process
must be considered. If, for example, a Nd:YAG laser wavelength of
532nm is transmitted, the first Stokes vibration-rotation Q branch of
nitrogen is centered at Ag, = 607 nm.

The molecular backscatter coefficient is calculated from the
molecular number density Ng,, which s the nitrogen or oxygen molecule
number density for the Raman case and the air—molecule number den-
sity for the Rayleigh case, and the molecular (differential) cross section
dog,/dS2(m, Ap) for the scattering process (Raman or Rayleigh) at the
laser wavelength Ag and the scattering angle 7:

Bra(R, ho) = NIm(R)—C%i(z, Xo). (4.14)

Bra(ro) is identical with Bnq in Eq. (4.2), if Eq. (4.13) describes a
Rayleigh signal. The molecular number density profile is calculated from
actual radiosonde observations or standard-atmosphere temperature and
pressure profiles.

After inserting the expressions (4.14) into Eq. (4.13), taking the
logarithms of both sides of the resulting equations, differentiating them
with respect to R, and rearranging, we obtain for the total extinction
coefficient

(R, 20) + (R hae) = IS S O(R i) (419
with the range-corrected molecular signals S(R, Ara),= R?2P(R, Ara)-
The overlap term need not be considered for long distances at which
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O(R, Aga) = 1. Total laser-beam receiver-field-of-view overlap may in
practice not be reached for distances below 2000-3000 m. The measure-
mentrange can in these cases be increased (toward the lidar) by correcting
for the overlap effect. The correction is based on measurements of the
overlap profile with the same lidar under clear sky conditions [42].
However, as can be seen from the relation

d 1 d v
ﬁln O(R, Ara) = 0(R w0 dR —O(R, ARa) (4.16)
the determination of the extinction coefficient is rather sensitive to over-
lap uncertainties close to the lidar where the overlap value is low and
changes rapidly with distance. )

In the following we concentrate on the optimum meéasurement range,
i.e., we assume proper overlap correction and thus 1gn01e the overlap
term in Eq. (4.15). With Eq. (4.3) we can write

[

d N 2(R)
Olaer (R, Ao) + ttaer (R, ARa) = dR In m — omol (R, Ao)
3 a .
— amol (R, Aga). 4.17)

To obtain the extinction coefficient at the transmitted wavelength we
have to introduce the Angstrom exponent d(R), which describes the
wavelength dependence of the particle extinction coefficient,

aaer(}\()) _ (ﬁ)a(R)

(4.18)
laer (ARa) Ao

(cf. Table 4.1).
Finally we obtain [11]

d NRa(R) R
——.~1|————————~—-—<Xm R,)\, "'am 7)\’R
dR S(R, )\Ra) Ol( 0) 01( a)

)\O- a(R)
1+ (=
! ()Lﬁa)%
(4.19)

For rotational Raman and HSRL s1gnals the denominator can be set to
2. In contrast to the Klett algorithm, no critical assumption is needed.
All the molecular density and Scattering terms can be calculated from
meteorological or from standard-atmosphere data. Overestimation and
underestimation of the & value by 0.5 leads to relative errors of the order
of 5%.

Oaer (R, Ag) =
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As mentioned, in addition to the extinction coefficient, the particle
backscatter coefficient can be calculated from the ratio of the aerosol
(particle plus Rayleigh) backscatter signal to the molecular backscatter
signal as suggested by Cooney et al. [43] and Melfi [44].

The particle backscatter coefficient Bue (R, Ag), now explicitly writ-

ten as a function of the laser wavelength iy, can be determined: by

using both total (particle + molecular) and pure molecular backscat-
ter signals. Two measured signal pairs P(R, Ag) and P(R, Ag,) at R and
Ry are needed. From two lidar signals P(R, Ag) and P(Ry, Ag) from
total backscatter [Eq. (4.1)] and two more lidar signals P (R, Ar,) and
P(Ry, Ara) from molecular backscatter alone [Eq. (4.13)], a solution
for the backscatter coefficient B, (R, Xo) is obtained by forming the
ratio [12]

P(Ry, Ara) P(R, L)
P(Ry, 20)P(R, Ara)’

(4.20)

inserting the respective lidar equations for the four signals, and rearrang-
ing the resulting equation. The solution is

ﬂaer(Ra )‘40) + ,Bmol (R, )\0)
P(Ro, Ara) P(R, Ap) Nra(R)
P(Ro, M) P(R, Ara) Nra(Ro)

exp{— f[ﬁz [0taer (s ARa) + Cnoi (7, Ara)] dr}
X .
oxp{— [ [0taer (r, h0) + ol (1, Ao)] dr)

= [,Baer(RO, )\0) + ,Bmol(ROa )VO)]

(4.21)

If the two signal channels are properly aligned so that O(R, Ags) =

. O(R, Ap), then overlap effects cancel out because the backscatter pro-
file is determined from the signal ratio profile P(R, Ao)/P(R, Ara). As
a consequence, the backscatter coefficient can be determined even at
ranges very close to the lidar, as will be shown in Section 4.4.

As in the Klett procedure, a reference value for particle backscatter-
ing at Ry must be estimated. To reduce the effect of the uncertainty in
this estimate on the solution, it is recommended to choose the reference
height in the upper troposphere where particle scattering is typically
negligible compared to Rayleigh scattering. Then only the air den-
sity, the molecular backscattering, and atmospheric extinction properties
must be estimated to solve Eq. (4.21). Again, meteorological profiles or
standard-atmosphere data are used to calculate air density and molecular
backscatter terms. The particle transmission ratio for the height range
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between Ry and R is estimated from the measured particle extinction
profile with the assumption on the wavelength dependence A% as used in
Eq. (4.19). In the case of the rotational Raman and HSRL signals spectral
transmission corrections are not necessary.

Finally, the height profile of the particle lidar ratio,

Caer (R, Xo)
,Baer(R, )\0) ’

is obtained from the profiles of @ (R, Ag) and PBaer(R, Ag) with
Egs. (4.19) and (4.21). For lidars pointed vertically, R = z.

Laer (R, A) = (4.22)

4.3 Retrieval of Physical Properties of Atmospheric Particles

Natural particle size distributions can be described rather well by analytic
expressions such as logarithmic-normal distribution’s (e.g., Hinds {45]):

i (ln r—In rmod,N)2
V2 Ino P 2 (Ino)?

dn(r) denotes the number concentration of particles in the radius inter-
val [Inr;Inr +dInr], n the total number concentration, ryeqn the
mode radius with respect to the number concentration, and o the mode
width, i.e., the geometric standard deviation. Equation (4.23) charac-
terizes a monomodal distribution. Multimodal distributions are sums of
>2 monomodal distributions. The surface-area and volume concentra-
tions follow from Eq. (4.23) by multiplication with 4772 and 47733,
respectively. Other shapes of particle size distributions are found in, e.g.,
Hinds [45].

The'mean and integral properties of the particle ensemble that are
calculated from the inverted particle size distribution are the effective
radius, i.e., the surface—.area—weighted mean radius

'fn(ij)r3dr” ‘

dn(r) = jl dinr. (4.23)

Feff = fn(r) aar (4.24)
the total surfacé—area concentration o .

a = 4n / n(r) r*dr, : (4.25)
and the total volume concentration

v = 4?” / n(r)r®dr. (4.26)
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A variety of methods have been proposed since the early 1970s for the
retrieval of microphysical particle properties from lidar measurements.
These methods can basically be classified into three distinct groups. The
first group deals with the combination of a monostatic lidar with some
other instrument, e.g., in situ instruments carried aboard an aircraft [46]
or balloon [47-50]. Applications are restricted to cases such as field cam-
paigns during which such a combination of instruments on an airplane
or other airborne platform is most likely to be at hand. It then pro-
vides detailed information on microphysical particle properties [S1-53].
Extreme care must be taken, however, in the translation of these data
into those amenable to comparison with lidar data. Spatial and temporal
proximity of the two instruments is very important in the case of observa-
tions of the highly variable tropospheric particles. This constraint is less
important for stratospheric particles because of the specific conditions
prevailing in the stratosphere (cf. Subsection 4.3.2).

A preferred approach is the combined use of lidar with a sun
photometer. In that case the treatment of the data from the two instru-
ments is more straightforward. The latter delivers integrated optical
depths of the atmospheric column at multiple wavelengths. A mathe-
matical inversion scheme, which is similar to the methods described in
Subsection 4.3.1, is used to derive depth-integrated particle size distribu-
tions from the sun photometer observations [54]. The combination with
lidar observations then allows a rough estimate of the depth-integrated
complex refractive index [17]. A few studies deal with the retrieval of
particle size and complex refractive index on the basis of bistatic lidar
observations [55-57]. Height profiles of this parameter could be derived
with supporting data from additional observations with a monostatic lidar
and a sun photometer {58]. Comparison with simultaneous in situ obser-
vations made aboard an aircraft did not show satisfactory agreement.

The drawback in each case is again that two instruments are needed at
the same time and in the same location in order to give reliable data on the
same particles. In addition, the lidar and sun photometer point in different
directions, i.e., away from the sun and into the sun, respectively. For that
reason the constraint of observations of the same ensemble of particles
cannot be fulfilled in a strict sense, and thus represents an additional
source of error.

In the second class of methods Mie-scattering calculations are
intended to reconstruct the optical quantities derived from multiwave-
length lidar observations [50, 59-62]. For that purpose parameters such
as the shape of the particle size distribution and complex refractive
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index are assumed « priori. Because of the uncertainties associated with
such a priori assumptions the application of these methods has been
restricted to special cases. In the case of stratospheric particles, i.e., polar
stratospheric clouds and ejecta from volcanic eruptions, they were quite
successful (cf. Subsection 4.3.2). Investigations of noctilucent clouds in
the mesosphere have only recently become possible [63—65]. In the case
of tropospheric particles only a crude classification into different types
of tropospheric particles is possible [59]. In the special case of desert
dust results were unsatisfactory [66].

Finally, the third class is a rigorous mathematical approach on the
basis of multiwavelength lidar observations. In that respect the tech-
nically robust setup of monostatic Raman lidars is almost exclusively
considered. The method uses the spectral information ‘contained in the
backscatter and extinction information at multiple wavelengths and its
change with particle size. First feasibility studies weremade by Uthe [67]
and by Uthe et al. [68]. Starting from the work of the early 1980s [57, 69]
significant progress has been made. Some exploratory work considered
the feasibility of multiwavelength observations with a bistatic lidar [70].
But results are not conclusive for a proper assessment of the potential of
this technique in view of the difficulties in connection with the exper-
imental setup. A specific technique deals with the retrieval of particle
parameters on the basis of multiple-field-of-view observations in the case
of multiple-scattering contributions to aerosol lidar returns [71]. This
technique is only applicable for particle size parameters >5~10 [72], and
so far only considered the case of single-wavelength lidar. The amount
of a priori information introduced into the mathematical algorithms can
be kept lower compared with the methods belonging to class two. The
specific use of mathematical tools makes these techniques very versatile
and robust with respect to the highly variable properties of tropospheric
particles. The basic properties of the successful algorithms used for the
retrieval of microphysical particle properties from multiwavelength lidar
sounding will be discussed in the following subsection.

H
i
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4.3.1 Tropospheric Particles

LS

The method-of inversion with regularization with constraints [73] is the
standard method for the retrieval of microphysical parameters of tro-
pospheric particles from multiwavelength lidar observations [20, 32,
74-78]. Profiles of the physical particle properties follow from the
numerical inversion of the vertically and spectrally resolved particle
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backscatter and particle extinction coefficients. The optical data are
related to the physical quantities through Fredholm integral equations
of the first kind:

8i(i) = / Ki(r,m, A, s)u(r) dr 4 €7 (M),

"min

I = Baers Caer, k=1,...,n. 4.27)

The term g; (1) denotes the optical data at wavelengths Ay in a specific

height R. For easier reading, reference to height R will be omitted in

the following discussion. The subscript i denotes the kind of infor-
mation, i.e., whether it is the particle backscatter ( Baer) Or particle
extinction (o, ) coefficient. The data have an error el.e **(he). The expres-
sion K;(r, m, A, s) describes the kernel efficiencies of backscatter and
extinction, respectively. They depend on the radius r of the particles, their
complex refractive index m, the wavelength A, of the interacting light,
as well as the shape s of the particles. For spherical particle geometry the
kernel functions K; (r, m, Ag, s) are calculated from the respective extinc-
tion and backscatter efficiencies Q; (r, m, A;) for individual particles [79]
weighted with their geometrical cross section 772

Ki(rym, Ay) = 3/4r)Q;(r, m, Ap). (4.28)

The term v(r) describes the volume concentration of particles per radius
interval dr. The lower integration limit is defined by 7win, the radius
down to which particles are optically efficient. For measurement wave-
lengths larger than 355 nm, which is a typical wavelength used for aerosol
sounding, the minimum particle size is around 50 nm in radius. The upper
limit, 74, 1S the radius at which concentrations are so low that particles
no longer contribute significantly to the signal. For typical particle size
distributions in the troposphere ry,y is below 10 wm.

In the inversion of Eq. (4.27) the volume concentration is in general
preferred over the surface-area or number concentration because it
shifts the maximum sensitivity of the kernel efficiencies farther into
the optically active range of the investigated particle size distributions.
On average this shift leads to a stabilization of the inverse problem
(see below). Further improvements of these inversion methods can be
expected from a variable use of volume, or surface-area, or number con-
centration in dependence of the investigated particle size distribution.
The main problem which has not been solved yet is how the inver-
sion method by itself can find the most suitable kernel presentation
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for each individual data set. First sensitivity studies have been started
recently {77, 78].

With the subscript p = (i, Ax) summarizing the kind and number of
optical data, Eq. (4.27) is rewritten into the following form:

Fmax
gp = / K, @, myv(rydr + EZXP. (4.29)
Fmin ”
Equation (4.29) cannot be solved analytically [80, 81]. The numerical
solution process [57, 73] leads to the so-called ill-posed inverse prob-
lem [82], which is characterized by the incompleteness of the available
information, the non-uniqueness of the solutions, and the non-continuous
dependence of the solutions on the input data. Even uncertainties as
small as round-off errors in the input data lead to unprop01t10nally large
changes in the solution.

The retrieval of microphysical particle properties from lidar mea-
surements belongs to the class of severely ill-posed problems [76]. This
definition arises from several features connected to lidar observations.
Measurement errors are much larger than round-off errors. Incomplete-
nessis given by the small number of measurement wavelengths, as well as
the fact that only backscatter and extinction information is available. The
non-uniqueness of the solutions follows from the highly complex struc-
ture of tropospheric aerosols. They may be multimodal and of variable
shape. The complex refractive index of the particles may be wavelength-
or size-dependent, or both. Particle shape often deviates from sphericity.
Accordingly different combinations of the target parameters may lead to
similar optical spectra within the measurement uncertainty.

The first attempt to derive physical quantities on the basis of lidar
observations at multiple wavelengths was undertaken with the so-called
randomized-minimization-search technique [69]. This approach did not
overcome the instability problem in the solution of Eq. (4.29), when an
unknown particle size in combination with an unknown complex refrac-
tive index was assumed. The more successful technique of inversion
with regularization was introduced after thaf [57, 83-85]. However, the
studies still suffered from unrealistic assumptions on the capabilities of
aerosol lidar systems, like a large number of measurement wavelengths
and/or features such as the number of extinction channels, or the desired
particle information was derived under the assumption of a known com-
plex refractive index. The refinement of this method in combination with
the development of powerful aerosol lidar systems [31, 86], which make
use of Raman channels, resulted in the determination of particle size
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parameters and mean complex refractive indices [74] and thus of the
single-scattering albedo [87], which is one of the most important param-
eters in computer models dealing with climate forcing by aerosols. The
most significant step in this development was the reduction of measure-
ment wavelengths to a realistic number, currently provided by modern
aerosol lidar instruments.

The three inversion algorithms that are used for the routine retrieval
of microphysical properties of tropospheric particles [75-77] make use
of the techniques described in the following. Base functions are used
to select an appropriate subspace from the solution space. Such projec-
tion techniques, which originally were introduced by Backus and Gilbert
[88, 89], are a necessary condition to turn the ill-posed inverse problem
into a well-posed problem [76]. Only the combination of backscatter
and extinction coefficients provides for trustworthy particle parameters
[20,77]. A ratio of two to three for the number of backscatter to extinction
coefficients can be considered as the optimum choice for the specifica-
tions of an aerosol lidar [77], if simplifications for tropospheric particles
like wavelength- and size-independence of the complex refractive index
are considered. The three standard wavelengths of a Nd: YAG laser, i.e.,
355, 532, and 1064 nm, are the minimum number of wavelengths for
particle characterization [76, 77, 90], under the above-mentioned sim-
plifications for the complex refractive index. The accuracy increases if
backscatter coefficients at up to six wavelengths are used [20, 57, 77].

For the solution of Eq. (4.29) the investigated size distribution v(r) is
discretized by a linear combination of base functions B;(r), also denoted
as B-spline functions, and weight factors w;:

v(r) =D w;B;(r) + €™ (r). (4.30)
J

The right-hand side of Eq. (4.30) contains the mathematical residual

error €™ (7) that is caused by the approximation with base functions.’

From Eq. (4.30) it is obvious that the inversion codes are not restricted
to specific shapes of particle size distributions.

Different shapes of the base functions, denoted as B-splines of order
[, are possible. One has to keep in mind that a good reproduction of
natural particle size distributions crucially depends on the shape of the
base functions. For this reason histogram columns, denoted as B-spline
functions of zero degree [69], are not well suited. Tnangle functions,
known as B-splines of first degree [75, 77, 85], and parabohc functions,
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i.e., B-splines of second degree [91, 92], have shown good performance
characteristics. In the latter case the shape already implicitly carries
detailed structure of naturally occuring particle size distributions and thus
can be considered as arather constraining approach. In the case discussed
in Ben-David et al. [91] the set of base functions was augmented by a
special class of Junge-type functions [45] in order to account for such
special cases of particle size distributions. A new concept makes use of
higher-order polynomials [76], which permit a better reconstruction of
highly-structured particle size distributions.

The base functions usually are distributed such that their nodes have
the same distance on a non-equidistant scale of particle radii, e.g., on a
logarithmic radius scale [75, 77, 85]. In that way the base functions make
explicit use of the high dynamic range of particle size distributions which
extends over several orders of magnitude. On the other hand, narrow size
distributions or distributions consisting of particles ggiround the limit of
the optically efficient size range may give better results if their nodes are
equally distributed on the linear scale of particle radius.

There is no common recipe for the optimum number of base func-
tions. This number may vary with size range, or number of modes,
or particularities of the complex refractive index of the investigated
size distribution. Some information may be found in Wolfenbarger and
Seinfeld [93], Golub et al. [94], Ben-David et al. [91], Miiller et al. [75],
and Béckmann [76]. The minimum number of base functions is equal
to the number of available data points in the algorithms described in
Miiller et al. [75] and Veselovskii et al. [77]. Eight base functions pro-
vide good resolution of monomodal size distributions and give acceptable
estimates for bimodal distributions. Improved results are obtained for
higher numbers of base function, i.e., approximately 12—14 base func-
tions. A very high number of 68 base functions was used in theoretical
studies in Ben-David et al. [91]. In that case 15 measurement wave-
lengths, very accurate optical data, and a known complex refractive
index were assumed, all of which is rather unrealistic in view of lidar
instrumentation. Basically the increase of number of base functions can
also be achieved by the use of polynomlals of hlgher order [76]. It
has to be observed that an increasing number of base functions again
results in increasing destabilization of the inverse problem (e.g., Nychka
et al. [95]).

In general the exact position of the investigated particle size distribu-
tion along the size range used by Eq. (4.29) is not known. The problem
is overcome by the use of a so-called inversion window of variable width
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and variable position along the investigated size range [75]. Within this
inversion window the base functions are arranged next to each other
as described before. No sensible solutions are obtained if the inversion
window does not cover the position of the investigated particle size dis-
tribution. In that respect the shifting inversion window can be regarded
as a filter function. Currently 50 different inversion windows within the
particle size range from 0.01 to 10 pwm are used to obtain an estimate of
the position of the particle size distribution [75, 77]. The polynomials of
higher order are restricted to a similar size range [76].

The weight factors follow from inserting Eq. (4.30) into Eq. (4.29),
and rewriting it into a vector-matrix equation:

g = Aw + €. (4.31)

'The optical data are written as vector g = [g,], the weight factors are
denoted by w = [w;], and the errors are described by € = lepl. €p =
€p’ + €M is the sum of experimental and mathematical errors. The
matrix A = [A ;] is called weight matrix [81]. Its elements are given by

Ay(m) = / ™Ky By () dr (4.32)

Fmin

The simple solution of Eq. (4.31) for the weight factors,
w=Algt+¢, (4.33)

fails to provide reasonable results [81] although the optical data can be
reproduced within the error limits €. It is explained by the high dynamic
range of several orders of magnitude of the elements of A and A~!
[20, 81]. Therefore the term € = —A !¢, which describes the respective
errors, and A, which denotes the inverse of the matrix A, lead to the
aforementioned error amplification and discontinuity of the solutions.

Therefore, a procedure is introduced that we call regularization. This
technique selects those solutions for which € in Eq. (4.31) drops below
a predetermined minimum value >0. This step is fundamental in the
solution process. From first principles it is not possible to exactly repro-
duce the input optical data from the inversion results. There is always
the compromise between the exact reproduction of the optical data and
the suppression of error amplification. In the minimization concept, or
method of mimimum distance [73, 81], the so-called penalty function e?
is introduced. It is defined via the simple Euclidian norm || - ||:

e > |Aw —g|* +yT(). (4.34)
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The penalty function includes physical constraints that are imposed on
the solutions and which are determined by the actual underlying physi-
cal problem. One differentiates between descriptive and nondescriptive
regularization methods [76]. An example for the first method is the use
of a priori information about the solution itself, e.g., the exact shape
of the particle size distribution. A wrong choice of the shape leads in
that case to wrong inversion results. Information on the measurement
error is another possibility. The algorithm described here employs the
non-descriptive regularization method. In this case “smooth” [75, 80, 81]
and positive solutions [75, 96, 97] are assumed for the investigated size
distribution. The behavior of the particle size distribution in the vicinity
of rmin and rpax can also be used as a constraint [75, 77]., )

The smoothness constraint in Eq. (4.34) is described through the
additional penalty term I"(v). I"(v) is a non-negative sga’lar which meas-
ures the deviation of the inverted particle size distribytion v(r) from the ‘
requested smoothness. With wT denoting the fransposed of the vector w,
the mathematical definition of smoothness I'(v) is given by [81]:

I'(v) = w Hw. (4.35)

Smoothing is done in terms of the second derivative of the reconstructed
particle size distribution. In the case of eight base functions and eight
optical data, this matrix is written as:

(4.36)
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Other forms of smoothing are presented in Twofﬂey [81], but in general
are not used in lidar applications. An innovative approach avoids explicit
smoothing through the additional penalty term to allow for better retrieval
of multimodal size distributions [76].

The solution of the minimization concept follows from writing
inequality (4.34) as an equation, and by expressing I'(v) with Eq. (4.35).
With T denoting the respective transposed expressions, the weight vector
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w is written as [81]:
w=(ATA +yH) ' ATg. (4.37)

The inverse problem is stabilized by the matrix (ATA + )/H)“1 AT,

Figure 4.1 illustrates the concept of regularization. The influence
of H is determined by the Lagrange multiplier y. For y = 0 there is no
smoothing, and only the base functions act as regularization (smoothing)
parameter [76]. y — ooresults in a perfectly smooth solution v(r) which
is, however, independent of g. As already explained in the context of
inequality (4.34), values of 0 < y < oo create solutions for which the
oscillating behavior is penalized by I'(v) and thus is suppressed to a
certain degree. One chooses as a solution that value of ¥ for which the
complete penalty function in Eq. (4.34) takes a minimum.

The optimum value for the Lagrange multiplier is given by the global
minimum of Eq. (4.37), if y is varied across several orders of magni-
tude. Different methods can be used to determine this minimum. The
exact location of the minimum depends on the respective method, which
thus has influence on the quality of the inversion results. A general
overview of such methods is found in Engl et al. [98]. With respect
to lidar the maximum entropy principle [92], the method of generalized
cross-validation [75], the truncated singular value decomposition [76],
and the method of minimum discrepancy [77] have been suggested.
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Fig.4.1. (a) Qualitative illustration of the reconstruction error for increasing smoothing.
Shown is the penalty term (thick solid), the error of the reconstructed optical data (thin
solid), and the error caused by the smoothing term (dashed). (b) Qualitative effect on
the accuracy of the reconstructed particle size distribution. Shown is the case with
insufficient smoothing which leads to oscillating solutions (dotted), ideal smoothing,
which leads to an ideal reconstruction (thin solid), and the case of strong smoothing
which again leads to a false reconstruction (dashed). Also sh9wn is the theoretical
particle size distribution (thick solid).
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Generalized cross-validation (GCV) has been shown to work quite
well [20]. The method explicitly uses the relationship among the input
data. It neither needs an a priori estimation of the expected error in the
data nor an a priori assumption of the solution or the statistical and sys-
tematic errors. There is only little tendency toward oversmoothing, and
low sensitivity to statistical and systematic errors. The closed expression
for the calculation of the GCV parameter Pgcy is written as

1
— [ -Mo)]e|’
Poov(y) = — min. (4.38)

1 2
{-l—)—trace [I — M(y)]}

I is the unit matrix. The influence matrix )
M(y) = A[ATA +yH] AT, (4.39)

is the product of the kernel matrix A and the matrix [ATA + )/H]_1 AT
of Eq. (4.37) [99].

A modified form of the original minimum discrepancy principle
also showed good performance [77]. The need for knowing a priori the
measurement error has been overcome by the use of the modulus |v(r)]
of the retrieved particle size distribution. In that case the minimum devi-
ation is calculated from the difference between input optical data and
the optical data obtained from [v(r)|. The parameter of the modified
minimum discrepancy Pyvvp is calculated as

1 llg = Alv[]l
Puvn(y) = ;—g——“

min. (4.40)

The global minimum of regularization curves may become rather
shallow under certain circumstances {20]. In that case the solutions
are not well defined. Averaging of many solutions across the shallow
minimum of the discrepancy curve is an elegant new concept [77]. It
significantly improves the inversion results and even provides a new
approach to error estimation in the inversion. a

The discussion given to this point has described the retrieval of the
particle volume concentrations for one complex refractive index and
for one input optical data set for the (50) different inversion windows.
In the case of regularization with GCV this solution space is further
constrained. If the measurement errors are known, only those particle
volume concentrations are accepted for which the recalculated optical
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data are within the uncertainty of the input optical data. In the case of
the minimum discrepancy principle the additional constrainment of the
solution space implicitly follows from the regularization step.

The solution process described above now has to be carried out for a
range of wavelength- and size-independent complex refractive indices,
which are given by the kernel functions in Eq. (4.29) [20]. For that
purpose one chooses a grid of values for the complex refractive index.
The imposed constraints do not allow solutions for some of the complex
refractive indices. Consequently, the solution space of this parameter is
determined. However, the solution space may be unacceptably large. In
such cases the solution space may be further constrained: For example
solutions that have optical data closest to the input optical data may serve
as constraint. Again it must be observed that the exact reproduction of the
input optical data is not possible for theoretical reasons. In addition one
can make use of the statistical information within the solution space. If
the complex refractive index is correctly chosen, there may be many more
inversion windows that provide for sensible particle size distributions
compared with complex refractive indices far away from the correct
value. However, this property cannot be considered as a general rule. If
such solution spaces are visualized in terms of a matrix-like scheme, with
x and y representing the real and imaginary axes, one obtains solutions
along a diagonal. At some point within this diagonal many more solutions
are found than in another region, or the reconstructed optical data, which
belong to these solutions, may exhibit a lower deviation to the input
optical data compared with the conditions in neighboring areas of the
matrix. This area of decreased reconstruction error may serve as a further
constrained solution space. Examples for such matrices are found in
Miiller et al. [87, 90] and Bockmann [76].

Solutions have to be determined for the input data varied within their
measurement uncertainty. It is not clear how many variations must be
performed until statistically significant results are obtained. This uncer-
tainty is again caused by the numerical solution of the ill-posed problem,
which is highly nonlinear, and the actual physical properties that underly
the optical data. A discussion can be found in Miiller et al. [20] and
Bockmann [76]. Itis assumed thatin general 10-20 different runs provide
reliable results.

A severe problem in the inversion is a trustworthy error analysis.
Because of the numerical solution process and the highly nonlinear
behavior of Eq. (4.29) standard techniques of determining error propa-
gation fail. The methods described above have shown to give acceptable
error estimates [32, 77], but cannot be considered as the final solution to
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this problem. Future work will also focus on resolving the simplifications
that have to be made so far and which present additional sources of uncer-
tainty. Table 4.1 lists the single-scattering albedo which is a wavelength
dependent parameter. This wavelength dependence is the result of par-
ticle size as well as the fact that particle size distributions may possess
a wavelength- and/or size-dependent complex refractive index. The
investigation of how accurately parameters of particles-of non-spherical
geometry can be retrieved will be another challenge. For that purpose
particle depolarization measurements at one or several wavelengths will
have to be considered in the data retrieval. The most important example
of this class of particles is desert dust, see Table 4.1.

4.3.2 Stratospheric Particles

Three different approaches have been applied to_describe the long-
term trends in the microphysical properties of the stratospheric
aerosol layer after the Mount Pinatubo eruption: The conventional,
single-wavelength-lidar technique [48, 100, 101], the multiwavelength-
backscatter-lidar technique {50, 60-62, 102, 103], and the Raman-lidar
technique [36, 49]. Most simple and reliable are the conventional and the
Raman lidar technique. These two methods were compared in terms of
surface-area and mass concentrations based on dense, S-year Pinatubo
data sets [104]. ‘

The conventional and the Raman lidar technique make use of the
following relationship between the total surface-area concentration a,(z)
and total volume concentration v;(z), and the backscatter and extinction
coefficients at height z at a single wavelength [49]:

ay(z) _ 4

= , (4.41)
:Baer(z) Qﬁ,eff(z)
@ (@) , (4.42)
,Baer(z) 3Q/3,eff(z,)
a@ A (4.43)
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The Qqp [cf. Eq. (4.28)] and, thus, O, g.(z) depend on the particle
size distribution n(r, z) and the refractive index m of the aerosol particles
which, in the case of volcanic aerosol, consist of sulfuric acid and water.
The sulfuric-acid content of the droplets is mainly a function of tempera-
ture and varies between 40% and 85% for temperatures between 195 and
250 K. The refractive index can thus be accurately determined by means
of temperature profiles routinely measured with radiosondes. The size
distribution n(z) of stratospheric particles is well described by a bimodal
logarithmic-normal distribution. Typical median (mode) radii are
0.07-0.1 pm for the stratospheric background mode and 0.3-0.6 pm for
the volcanic mode [48].

The surface-area and volume concentrations, a.(z) and v(z),
are finally determined by multiplying the backscatter coefficients
and/or the extinction coefficients with the respective conversion factors
[Egs. (4.41)—(4.44)]. The mass concentration is obtained by multiplying
the volume concentration v;(z) with the specific gravity of the sulfuric
acid droplets. Finally, the effective radius as defined by Eq. (4.24) is
simply given by 3v;/a;.

As discussed and illustrated by Jdger and Hofmann [48] and by
Jager and Deshler [101] who performed extensive Mie-scattering cal-
culations and evaluated in this way 20-year measurements of the aerosol
size distribution with balloon-borne optical particle counters at Laramie,
Wyoming, the conversion factors change considerably with time and
height during the first three years after a major volcanic eruption. This
change is caused by the change of the particle spectrum, especially by
the removal of the second, volcanically induced large particle mode as a
result of size-dependent gravitational settling. In that case the effective
radius and the scattering efficiencies of the scatterers decrease. It was
found that the seasonally averaged conversion factors in the lower strato-
sphere dropped by a factor of 1.5-3 in the first winter after the E1 Chichén
and the Pinatubo eruptions compared to the respective pre-eruption
values. They slowly returned to stratospheric background values during
the following three years. Thus, to obtain reliable results from the con-
ventional backscatter-lidar measurements, a time- and height-dependent
stratospheric aerosol model is used today that is based on the Laramie
measurements. By means of this model, seasonally averaged conver-
sion factors for several stratospheric layers are determined and applied
to the lidar data. As a consequence of this procedure, the backscatter-
lidar technique is restricted to midlatitudes and cannot be used in the
tropics or in polar regions because the temporal and vertical behavior of
the aerosol characteristics are unknown there. Furthermore, it is assumed
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that the aerosol characteristics found above Laramie at41° N for a certain
height level and time interval are equal to the microphysical properties
in the stratosphere over Garmisch-Partenkirchen (47.5° N) in the same
height region and for the same time period. Hence, the model-derived
conversion factors may be useful in the study of the long-term trend of
volcanic effects based on monthly or seasonal mean values of particle
parameters, but care must be taken in the interpretation of individual
observations of height profiles of the surface-area and volume or mass
concentrations.

As shown by Wandinger etal. [49], the conversion factors are
functions of the extinction-to-backscatter ratio. The facters can there-
fore directly be determined with sufficient accuracy from the measured
lidar ratio in the case of Raman-lidar observations so fhat, in the second
step, the microphysical propérties‘can directly be detérmined from the
backscatter and extinction profiles. No aerosol model is necessary. This
was found from calculations of conversion factors for a large number
of measured stratospheric particle size distributions. The Raman-lidar
method can therefore be used at very different places on the globe. It
was finally shown that the two-wavelength Raman-lidar technique at
laser wavelengths of 355 and 532 nm is most promising for stratospheric
aerosol profiling. The shorter wavelength is more sensitive to changes in
the optical characteristics and in the conversion factors several years
after the eruption when the background mode dominates the optical
effects. The longer wavelength is optimum during the first two years
after the eruption when the volcanic aerosol mode determines the con-
version factors. The principal-component analysis of multiwavelength
Raman lidar observations as suggested by Donovan and Carswell [35]
may be regarded as an alternative approach to the technique suggested
by Wandinger et al. [49].

Multiwavelength backscatter lidar is another promising technique
for the determination of microphysical parameters. Again, a time- and
height-dependent aerosol model is not required. However, this technique
suffers from the fact that the key information used in the retrieval pro-
cedure is the spectral slope of the backscatter coefficient determined
from elastic backscatter signals at two to four different wavelengths. As
outlined in Section 4.2, the signal profiles must be calibrated which
is crucial for wavelengths >1pum. In addition, profiles of the lidar
ratio at the laser wavelengths have to be estimated. The assumed lidar
ratio profiles sensitively affect the particle backscatter determination
at wavelengths <532 nm. As a consequence, the spectral slope of the
backscatter coefficient can only roughly be estimated.
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Different approaches to retrieve the physical properties can be found
in the literature. The basic idea is the comparison of the spectral slope
and strength of the backscatter coefficient obtained from Mie-scattering
calculations as a function of number concentration, mode radius, and
width of monomodal logarithmic-normal size distributions with the
observed backscatter-coefficient spectrum. From the size distribution
the parameters can then be calculated that best explain the lidar observa-
tions of surface-area, volume, and mass concentrations and the effective
radius.

4.4 Measurement Examples

4.4.1 Indo-Asian Haze Over the Tropical Indian Ocean

Figure 4.2 shows a lidar measurement taken during the Indian Ocean
Experiment (INDOEX), which was conducted in February and March
of 1999 in the tropical Indian Ocean. The observation was made with a
scanning 6-wavelength-11-channel aerosol lidar [86] at Hulule Island,
Maldives (4°N, 73°E). Two Nd:YAG and two dye lasers served as
radiation sources at 355, 400, 532, 710, 800, and 1064 nm. A beam
combination unit was used to align all six laser beams onto one optical
axis. The combined beam was then directed into the atmosphere at any
zenith angle between —90° and +90° by means of a steerable mirror.

N (a) | (c) -
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Fig. 4.2. Profiles of (a) backscatter and (b) extinction coefficient, and (c) lidar ratio
measured on March 25, 1999 [105]. Error bars denote standard deviations caused by
signal noise and systematic errors resulting from the estimates, of input parameters.
Because of large uncertainties introduced by the overlap effect and detector problems at
355 nm only the 532-nm backscatter profile is trustworthy down to the ground.
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The profiles shown in Fig. 4.2 were taken at a zenith angle of 30°. In
addition to the return signals elastically backscattered by air molecules
and particles at the laser wavelengths, Raman signals from nitrogen
molecules were detected at 387 nm (355 nm primary wavelength) and
607 nm (532 nm primary wavelength), and from water-vapor molecules
at 660nm (532 nm primary wavelength). At 710nm, the cross- and
parallel-polarized component (with respect to the plane of polarization
of the emitted laser light) of the backscattered signals were detected
separately. )

The example in Fig. 4.2 shows strongly absorbing anthropogenic
pollution advected from the Indian subcontinent to the lidar site [105].
The particle backscatter and extinction coefficients at-335 and 532nm
were determined using the Raman-lidar method (Subsection 4.2.2). The
backscatter profiles at 400, 710, 800, and 1064 nm weré obtained with the
Klett method (Subsection 4.2.1). The lidar ratio profiles were calculated
from the backscatter and extinction profiles at 355 and 532 nm. Detector
problems at 355 nm and large uncertainties in the overlap correction
prohibited the computation of the optical parameters below about
800 m height. ,

As can be seen in Fig. 4.2, several aerosol layers were present over
the Maldives on March 25, 1999. Above the polluted marine boundary
layer that reached into heights of 1000 m, a continental Indian pollution
plume extended up to 4000 m height. The extinction values were rather
large with values of 150-300 Mm~! (Mm~! = 10~%m~!) in the lofted,
free tropospheric aerosol layer. The 532-nm particle optical depth was
close to 0.6. The lofted layer contributed more than 60% to the total
particle optical depth. The optical depth of the marine boundary layer
was 0.2 and a factor of 2-3 larger than values obtained under unper-
turbed, clean conditions. The lidar ratios were often between 60 and
90 sr during INDOEX [30]. This finding is consistent with the presence
of a considerable amount of strongly absorbing particles in South Asian
aerosol pollution. ' ;

Such an aerosol layering as presented iif Fig, 4.2 cannot be resolved
with ground-based or spaceborne passive remote sensing. Only active
remote sensing allows a detailed, height-resolved analysis of this inter-
esting and, from the point of view of climate and environmental research,
very important measurement case.

Figure 4.3 shows the corresponding profiles of the microphysical
properties determined with the inversion scheme outlined in Subsec-
tion4.3.1. Mean effective radii are approximately 0.17 p.m below 1000 m
height. Rather height-independent mean values of 0.14—0.18 wm in
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Fig. 4.3. Profiles of (a) effective radius (®) and single-scattering albedo (0), (b) volume
concentration (@) and surface-area concentration (0), and (c¢) mean values of the real
(@) and imaginary part (O) of the complex refractive index [106, 107]. The error bars
for the particle size parameters indicate the standard deviation. For the inversion the
profiles were averaged across layers of 400 m thickness. The solid curve in each of the
figures shows the 532-nm particle backscatter coefficient.

the upper layer indicate a well-mixed pollution plume of aged, anthro-
pogenic aerosol particles. The air masses traveled about six days from the
highly industrialized and populated northern parts of India. They crossed
the Bay of Bengal before they reached the Maldives with the prevail-
ing northeast trade winds. The single-scattering albedo ranged between
0.79 and 0.86. These low values are also representative for strongly
absorbing particles which are believed to lead to a warming of the cli-
mate, as opposed to sulfate particles which are the main component of
North American and European aerosols. The imaginary part shows rather
high values between 0.01i and 0.08i and is much larger than the typical
value found for marine aerosols. The real part of the refractive index
varies between 1.5 and 1.8, with values centered around 1.65. The mean
volume concentration varies between 16 and 26 pm?/cm®. Mean
surface-area concentrations vary between 270 and 450 pm?/cm?.

In this example of an Indian pollution plume, the imaginary part of the
complex refractive index is an order of magnitude larger than correspond-
ing values found for non-absorbing European pollution observed during
the Aerosol Characterization Experiment 2 [108]. The volume concen-
tration is approximately 40% larger, the surface-area concentration is
10-20% larger. Particles from biomass burning observed over Germany
after long-range transport from northwest Canada during the Lindenberg
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Aerosol Characterization Experiment showed comparably large imagi-
nary parts [32]. However, volume and surface-area concentrations were
on average lower by a factor of 2-10.

4.4.2 Mount-Pinatubo Aerosol Layer

Figures 4.4 and 4.5 show two examples of stratospheric aerosol
observations over Germany after the Pinatubo eruption which is believed
to be the strongest perturbation of the stratospheric aerosol layer in the
past century. The Raman lidar measurement in Fig. 4.4 was performed
at Geesthacht (GKSS Research Center, 53.4° N, 10.4° E) during the first
spring after the eruption when the aerosol loading was highest. Extinc-
tion coefficients reached values characteristic for thin cirrus and the
surface-area and mass concentrations were a factor 6f 30~100 above
the stratospheric background values. The surfacesarea concentration
was clearly above the threshold value of 15-20 mm?m ™ (1 mm?m=> =
1 wm?cm ™) during the first winters after the Pinatubo eruption. At such
high values of surface area available for heterogeneous chemical reac-
tions a significant ozone reduction was observed in many places around
the globe. The uncertainties in the physical parameters retrieved with
the Raman-lidar method (Subsection 4.3.2) are discussed in detail by
Wandinger et al. [49]. The error bars in Fig. 4.4 include both statistical
and systematic (retrieval) errors. The uncertainties are relatively large
because of the ozone absorption correction necessary at the measure-
ment wavelength of 308 nm. The overall uncertainties would decrease
by about 30% in the case of a laser wavelength of 355nm at which
absorption by ozone is negligible.

The evolution of the stratospheric aerosol layer in terms of the mass
concentration over Geesthacht in northern Germany and Garmisch-
Partenkirchen (47.5° N, 11.1° E) in southern Germany is presented in
Fig. 4.5. Monthly mean. values obtained with the conventional lidar and
the Raman-lidar technique are compared. A very good agreement was
found in the central and lower part of the volé¢gnic aerosol layer. The
perturbation of the stratospheric aerosollayer declined with a 1/e decay
time of 13 to 13.5 months in terms of the mass concentration.

The good agreement between the two data sets confirms, on the one
hand, the capability of a conventional backscatter lidar, constrained to a
realistic aerosol model, to monitor the aerosol parameters most important
for climate and ozone—chemistry research. These measurements were
carried out to yield monthly or seasonal mean values. The agreement
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Fig. 4.4. Particle extinction and backscatter coefficients at 308 nm, the extinction-
to-backscatter ratio at 308 nm, the effective radius of the particle size distribution, and
the particle surface-area and mass concentrations [36]. The measurement was taken
on April 4, 1992. The dashed lines indicate the tropopause. The optical depth of the
stratospheric acrosol layer was 0.25. Error bars indicate the overall retrieval error.
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Fig. 4.5. Monthly mean layer-averaged mass concentrations derived from lidar obser-
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15-20 ki, and 20-25 km height) [104]. In terms of the monthly mean mass values inte-
grated from the tropopause to 25 km height, the atmospheric perturbation declined with
a 1/e-folding decay time of 13.5 months (Garmisch-Partenkirchen) and 13.3 months
(Geesthacht).

corroborates the reliability not only of the Pinatubo-related findings but
also of the El-Chichén observations which had already been performed
in the way described here. This techmque can thus be applied to many
single-wavelength lidars monitoring the st1atosphele both at northern
and southern midlatitudes. On the other hand, the comparison impres-
sively demonstrated the usefulness and, because of its longer list of
accessible aerosol parameters, superiority of an aerosol Raman lidar.
Because of the attractiveness of this technique, Raman channels are
being or have been implemented in many lidars around the world during
the past years. It remains to mention that today’s aerosol lidar tech-
nology enables us to provide the scientific community with vertically
resolved information about the relevant aerosol properties needed to
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properly describe the impact of aerosols on the Earth’s radiation budget
and atmospheric chemical processes.
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