Lecture 18. Temperature Lidar (6)
Integration Technique

J Review Doppler and Boltzmann techniques
J Integration technique for temperature

J Searchlight integration lidar

J Rayleigh integration temperature lidar

J Vibrational Raman integration lidar

J Falling sphere temperature measurement
 Rayleigh/Raman lidar instrumentation

J Summary



Review of Doppler & Boltzmann

J Doppler effect and Boltzmann distribution are two effects that are
directly temperature-dependent. The Doppler technique and Boltzmann
technique are "straight-forward” in the sense of deriving temperature
or wind. However, the lidar architecture is usually complicated and
sophisticated, due to the high demands on frequency accuracy and
tuning, laser linewidth, and laser power etc.
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Integration Technique

3 The hydrostatic equation dP(z)=-p(z)g(z)dz

P(Z)RT(z)
M(z)

J Integration from the upper altitude yields

p(zy) M(z) M(Z)fz() p(z)8z) 4
p(z) M(zy) R Y¢  p(2)

T(z) = atmospheric temperature profile (K)
P(z) = atmospheric pressure profile (mbar)

p(z) = atmospheric mass density profile (kg/m3)
g(z) = gravitational acceleration (m/s?)

M(z) = mean molecular weight of the atmosphere,
i.e., molecular mass per mole (kg/mol)
R = universal gas constant (8.314472 J/mol/K)

z, = altitude of the upper level starting temperature (m)

J Ideal gas law  |P(z)=

T(z)=T(zy)




Integration Technique

 Atmosphere mass density p(z) vs number density n(z)
p(z)=n(z)M(z)/ N,

where N, is the Avogadro constant: N, = 6.02214179x10%* mol~!
J Thus, we have

n(zy) . M(Z)sz n(z")M(z')g(z’) dz’

T(z)=T
(2) (ZO) n(z) R Z n(z)M(z)

] Below 100 km for the well-mixed atmosphere, we have

M(z) = M(z'), so they cancel out in the integration
n(Zo)+ M(Z)on n(z')g(z )dz’
n(z) R Y  n(z)

T(z)=T(z)

J Number density ratio (relative number density)
=> Temperature profile



Error Analysis for Integration Tech

J The uncertainty is determined by the photon noise and
upper altitude temperature T(z,). The variance of derived
temperature is given by

2
Var[T(z)]z I(2)

NR(Z)

+{V&I‘[T(ZO )|+

T*(zy)
Ng(zg)

o4z, )]

1 After 1-2 scale height, the error introduced by T(z,) is
not important anymore. So the temperature error is mainly
determined by the photon counts and their noise.

[ The key is how to measure atmosphere (relative) density
with high accuracy and precision. Different approaches can
be applied, not limited fo pulsed lidar technique.



From Searchlight to Rayleigh, Raman & Falling Sphere

J Integration temperature technique relies on the assumptions of
hydrostatic equilibrium equation and ideal gas law in atmosphere.
It involves integrating the atmosphere relative density profile
downward using a starting femperature at an upper altitude.

It was pioneered by Elterman [1951, 1953, 1954] with cw
searchlight fo measure stratospheric density thus deriving
temperature in 1950s.

J The use of high power lasers with the Rayleigh lidar in the
atmosphere region (30-100 km) free of aerosol and fluorescence
was pioneered by Hauchecorne and Chanin [1980] (French group).

J In the lower atmosphere where aerosol scattering contaminates
Rayleigh scattering, Keckhut et al. [1990] developed Raman lidar
to measure atmosphere density from vibrational Raman scattering
and then derive temperature below 30 km.

 Inflatable falling sphere provides high-precision atmosphere
density thus temperature measurements [Schmidlin et al., 1991].



Rayleigh, Raman & Falling Sphere using
Integration Temperature Technique
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Searchlight Integration Lidar
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Rayleigh Integration Lidar

J In the atmosphere region free of aerosols and
fluorescence, the lidar return photon counts are given by

P, (M)A
he/ A

A

=L (A DM(MG )+ Np
<

Ns()\,,Z) =(

)(ﬁRayleigh (2) AZ)

where Rayleigh backscatter coefficient is proportional to
a’rmosphere number densﬁy ﬁRay(Z) — GRay(E’)‘)na(Z)

J Thus, ratio of normalized photon counts gives the
atmosphere relative density information

Ng(z))-Ng zf _ na(z))

Ng(z3)-Np 723 n4(z3)

Lidar Backscatter Ratio = Relative Density = Temperature
(at different altitudes) (Rayleigh)



Sample of Temperature and Errors
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Raman

532 nm

607 nm

J Raman shift amount is independent of incident laser wavelength
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Raman Integration Lidar

J In the lower atmosphere region where aerosols present
Rayleigh scattering returns are contaminated by aerosol Mie
scattering, so cannot be used in the integration technique.

J However, Raman scattering only comes from molecules, thus,
free of aerosol influence. By detecting Raman scattering at a
different wavelength (e.g., 607 nm compared to 532 nm), Mie
and Rayleigh contamination are avoided.

NS()\")\“L 9Z) =

)(URaman ()LL JHZ)nNz (Z)AZ)

X

T (AL )T, (A.2)M(ALN(A)G(2))+ N

2
Z

Lidar Backscatter Ratio = Relative Density = Temperature
(at different altitudes) (Raman)



Rayleigh-Raman Integration Lidar
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Inflatable Falling Sphere

e Rocket transports a metal
P Aon i sphere to upper atmosphere
——’— 4
After release the sphere
7 inflates to 1-m metal sphere
falling through atmosphere
4
High-precision radar tracks
sphere position & acceleration

4
Input to ’rhe equation of mo’rlon

"J

= atmosphere density

T i
_ Integration from top to derive
| $, svcsoams corraramon Bollemanand Walker, 1968 temperature from density data

[Schmidlin et al., JGR, 96(D12), 22673-22682, 1991]




Falling Sphere Temperature
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Rayleigh/Raman Lidar Instrumentation

[ Typical Rayleigh/Raman temperature lidar utilizes the
commercial Nd:YAG laser system as it provides robust laser
power and operation (usually broadband).

1 Any (short wavelength) resonance fluorescence lidar, like
Fe Boltzmann lidar, also functions as a Rayleigh lidar in the
region free of aerosol and fluorescence (about 30-75 km).

J Rayleigh scattering is inversely proportion to the 4th
power of wavelength. So the shorter the wavelength, the
stronger the Rayleigh scattering, as long as atmosphere
absorption is not too strong.

J Operating in deep Fraunhofer lines will benefit daytime
operation to reduce the solar background.

d Availability and robustness of laser systems are another
consideration in lidar design.



Fe Boltzmann/Rayleigh Lidar




Sample Results from
Fe Boltzmann/Rayleigh Lidar
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Figure 4. The observed weekly mean temperature structure of the atmosphere above South Pole (UISP-
02) plotted from 3 to 110 km. Polar nights (24 h darkness) occur between the white curves at 90°S and
between the black curves at 80°S. The vertical resolution is 500 m.
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Utah State University Rayleigh Lidar

[ Doubled Nd:YAG laser at 532 nm (630 mJ/pulse, 30 Hz)
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Upper and Lower Rayleigh Temperature Profiles For September 24, 1994 Logan Utah
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Greenland Rayleigh Lidar
and Sample Results
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Greenland Rayleigh Lidar System
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Summary

J Integration technique relies on the assumptions of
hydrostatic equilibrium and ideal gas law in the atmosphere
interested. It involves integrating the atmosphere relative
density profile downward using a starting temperature
(usually coming from a model or independent measurement)
at an upper altitude.

J The key is to somehow measure the atmosphere relative
number density with high precision and unbiased.

J Integration technique started with cw searchlight in

1950s, dramatically enhanced by high-power pulsed Rayleigh
lidar in 1980s for region free of aerosols, further developed
by vibrational Raman lidar in 1990s for region with aerosols.

J Inflatable falling sphere released by rocket is another
perfect example for integration temperature technique.



Comparison

of Temperature Technique

Technique Lidars Applications
Doppler Technique: Resonance fluorescence Doppler Lidar: Mesosphere and Lower
temperature dependence Doppler broadening and Doppler shift of | Thermosphere temperature and
of Doppler broadening resonance fluorescence absorption cross- | wind (75-120 km)

(1 time Doppler shift and section (scan and ratio techs)
Doppler broadening for Rayleigh Doppler Lidar : Doppler Lower mesosphere, stratosphere

single absorption or
emission process)

(2 times Doppler shift and
Doppler broadening for
Rayleigh scattering)

broadening of molecular scattering

and troposphere temperature and
wind (up to 60 km)

High-Spectral-Resolution Lidar: Doppler
broadening of molecular scattering, ratio
of two signals

Stratosphere and troposphere
temperature and wind (up to 30
km)

Boltzmann Technique:
temperature dependence
of population ratio

Resonance fluorescence Boltzmann
Temperature Lidar: population ratio on
the lowest two ground states

Mesosphere and Lower
Thermosphere temperature (75-120
km)

Rotation Raman Temperature Lidar: ratio
of two Raman line intensities and
population on different initial energy
states

Troposphere and stratosphere
temperature

Integration Technique:
hydrostatic equilibrium
and ideal gas law

Rayleigh or Raman Integration Temp
Lidar: atmospheric density ratio to
temperature, integration from upper level

Stratosphere and mesosphere
temperature (30-90 km)
Troposphere temperature (< 30 km)

DIAL

Differential Absorption Lidar: Temp-
dependence of line strength and lineshape

Boundary layer temperature
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Temperature Lidar Techniques
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J 75-120km: resonance
fluorescence Doppler
technique (Na, K, Fe) &
Boltzmann technique (Fe,
OH, 0.,)

J 30-90km: Rayleigh
integration technique &
Rayleigh Doppler technique

J Below 30 km: scattering
Doppler technique, HSRL,
and Raman technique
(Boltzmann and integration)

J Boundary layer: DIAL,
HSRL, Rotational Raman



Summary

[ Temperature-dependent and temperature-sensitive effects
and phenomena are utilized in the temperature lidars to
measure atmosphere temperatures.

J Resonance Fluorescence Doppler Technique

(Na, K, and Fe Doppler lidars)
J Boltzmann Technique

(Fe and N,* Boltzmann lidars, imagers, Bomem mappers)
J Integration Technique

(searchlight, Rayleigh & vibrational Raman lidars, falling sphere)
J Rayleigh Doppler Technique

(Rayleigh Doppler lidar and high-spectral-resolution Lidar)
J Rotational Raman Technique

(Rotational Raman lidar)
] Differential Absorption Technique

(DIAL lidar)



