Lecture 12. Temperature Lidar (2) Doppler Ratio Technique

- Review Doppler Technique
- Scanning technique vs. ratio technique
- Principle of Doppler ratio technique
- Comparison of calibration curves
- Other resonance fluorescence Doppler lidars
- Summary

Review Doppler Technique

Temperature determined from Doppler broadening width Radial wind determined from Doppler frequency shift

Resonance absorption experiences 1-time Doppler shift and broadening, while Rayleigh scattering experiences 2 times of Doppler shift and broadening.

Review Doppler Technique

How will the lidar return signal strength (vs. laser frequency) change when the lidar receiver is broadband and we scan the narrowband laser frequency – in resonance fluorescence case and in Rayleigh scattering case?

Review Doppler Technique

□ The effective cross section is a convolution of the atomic absorption cross section and the laser line shape.

For Gaussian shapes of atomic absorption and laser lineshape:

$$\sigma_e = \sqrt{\sigma_D^2 + \sigma_L^2}$$

How would you calculate the effective cross section when atoms have isotopes, e.g., K (potassium)?

$$\sigma_{eff}(overall) = \sum_{k=1}^{N} \left[\sigma_{eff,k}(isotope) \times Abdn_k \right]$$

Scanning versus Ratio Techniques

Main Ideas Behind Ratio Technique

□ Three unknown parameters (temperature, radial wind, and Na number density) require 3 lidar equations at 3 frequencies as minimum ⇒ highest resolution.

 $\hfill In$ the ratio technique, Na number density is cancelled out. So we have two ratios R_T and R_W that are independent of Na density but both dependent on T and W.

□ The idea is to derive temperature and radial wind from these two ratios first, and then derive Na number density using computed temperature and wind at each altitude bin.

□ However, because the Na extinction coefficient is involved, the upper bins are related to lower bins, and extinction coefficient is related to Na density and effective cross-section. The solution is to start from the bottom of the Na layer and then work bin by bin to the layer top.

Principle of Doppler Ratio Technique

Lidar equation for resonance fluorescence (Na, K, or Fe)

$$\begin{split} N_{S}(\lambda,z) = & \left(\frac{P_{L}(\lambda)\Delta t}{hc/\lambda}\right) \left[\sigma_{eff}(\lambda,z)n_{c}(z)R_{B}(\lambda) + \sigma_{R}(\pi,\lambda)n_{R}(z)\right]\Delta z \left(\frac{A}{4\pi z^{2}}\right) \\ & \times \left(T_{a}^{2}(\lambda)T_{c}^{2}(\lambda,z)\right) (\eta(\lambda)G(z)) + N_{B} \end{split}$$

 $R_B = 1$ for current Na Doppler lidar since return photons at all wavelengths are received by the broadband receiver, so no fluorescence is filtered off.

Pure Na signal and pure Rayleigh signal in Na region are

$$N_{Na}(\lambda,z) = \left(\frac{P_L(\lambda)\Delta t}{hc/\lambda}\right) \left[\sigma_{eff}(\lambda,z)n_c(z)\right] \Delta z \left(\frac{A}{4\pi z^2}\right) \left(T_a^2(\lambda)T_c^2(\lambda,z)\right) \left(\eta(\lambda)G(z)\right)$$

$$N_{R}(\lambda,z) = \left(\frac{P_{L}(\lambda)\Delta t}{hc/\lambda}\right) \left[\sigma_{R}(\pi,\lambda)n_{R}(z)\right] \Delta z \left(\frac{A}{z^{2}}\right) \left(T_{a}^{2}(\lambda)T_{c}^{2}(\lambda,z)\right) \left(\eta(\lambda)G(z)\right)$$

So we have

$$N_{S}(\lambda, z) = N_{Na}(\lambda, z) + N_{R}(\lambda, z) + N_{B}$$

Lidar equation at pure molecular scattering region (35-55km)

$$N_{S}(\lambda, z_{R}) = \left(\frac{P_{L}(\lambda)\Delta t}{hc/\lambda}\right) \left[\sigma_{R}(\pi, \lambda)n_{R}(z_{R})\right] \Delta z \left(\frac{A}{z_{R}^{2}}\right) T_{a}^{2}(\lambda, z_{R}) \left(\eta(\lambda)G(z_{R})\right) + N_{B}$$

Pure Rayleigh signal in molecular scattering region is

$$N_{R}(\lambda, z_{R}) = \left(\frac{P_{L}(\lambda)\Delta t}{hc/\lambda}\right) \left[\sigma_{R}(\pi, \lambda)n_{R}(z_{R})\right] \Delta z \left(\frac{A}{z_{R}^{2}}\right) T_{a}^{2}(\lambda, z_{R}) \left(\eta(\lambda)G(z_{R})\right)$$

So we have

$$N_S(\lambda, z_R) = N_R(\lambda, z_R) + N_B$$

The ratio between Rayleigh signals at z and z_R is given by

$$\frac{N_R(\lambda,z)}{N_R(\lambda,z_R)} = \frac{\left[\sigma_R(\pi,\lambda)n_R(z)\right]T_a^2(\lambda,z)T_c^2(\lambda,z)G(z)}{\left[\sigma_R(\pi,\lambda)n_R(z_R)\right]T_a^2(\lambda,z_R)G(z_R)}\frac{z_R^2}{z^2} = \frac{n_R(z)}{n_R(z_R)}\frac{z_R^2}{z^2}T_c^2(\lambda,z)$$

Where n_R is the (total) atmospheric number density, usually obtained from atmospheric models like MSIS00.

From above equations, we obtain

 $N_{Na}(\lambda, z) = N_{S}(\lambda, z) - N_{B} - N_{R}(\lambda, z)$

$$N_R(\lambda, z_R) = N_S(\lambda, z_R) - N_B$$

Normalized Na photon count is defined as

$$N_{Norm}(\lambda, z) = \frac{N_{Na}(\lambda, z)}{N_{R}(\lambda, z_{R})T_{c}^{2}(\lambda, z)} \frac{z^{2}}{z_{R}^{2}}$$

So from physics point of view, we have

$$N_{Norm}(\lambda, z) = \frac{N_{Na}(\lambda, z)}{N_{R}(\lambda, z_{R})T_{c}^{2}(\lambda, z)} = \frac{\sigma_{eff}(\lambda, z)n_{c}(z)}{\sigma_{R}(\pi, \lambda)n_{R}(z_{R})}\frac{1}{4\pi}$$

From actual photon counts, we have

$$N_{Norm}(\lambda,z) = \frac{N_{Na}(\lambda,z)}{N_R(\lambda,z_R)T_c^2(\lambda,z)} \frac{z^2}{z_R^2} = \frac{N_S(\lambda,z) - N_B - N_R(\lambda,z)}{N_R(\lambda,z_R)T_c^2(\lambda,z)} \frac{z^2}{z_R^2}$$
$$= \frac{N_S(\lambda,z) - N_B}{N_S(\lambda,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(\lambda,z)} - \frac{n_R(z)}{n_R(z_R)}$$

 \square From physics, the ratios of R_T and R_W are then given by

Here, Rayleigh backscatter cross-section is regarded as the same for three frequencies, since the frequency difference is so small. Na number density is also the same for three frequency channels, and so is the atmosphere number density at Rayleigh normalization altitude.

From actual photon counts, we have

$$\begin{split} R_T &= \frac{N_{Norm}(f_+,z) + N_{Norm}(f_-,z)}{N_{Norm}(f_a,z)} \\ &= \frac{\left(\frac{N_S(f_+,z) - N_B}{N_S(f_+,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_+,z)} - \frac{n_R(z)}{n_R(z_R)}\right) + \left(\frac{N_S(f_-,z) - N_B}{N_S(f_-,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_-,z)} - \frac{n_R(z)}{n_R(z_R)}\right)}{\frac{N_S(f_a,z_R) - N_B}{N_S(f_a,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_a,z)} - \frac{n_R(z)}{n_R(z_R)}}{\frac{n_R(z_R)}{n_R(z_R)} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_a,z)} - \frac{n_R(z)}{n_R(z_R)}}{\frac{n_R(z_R)}{n_R(z_R)} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_a,z)} - \frac{n_R(z)}{n_R(z_R)}}{\frac{n_R(z_R)}{n_R(z_R)}} \end{split}$$

$$\begin{split} R_W &= \frac{N_{Norm}(f_+,z) - N_{Norm}(f_-,z)}{N_{Norm}(f_a,z)} \\ &= \frac{\left(\frac{N_S(f_+,z) - N_B}{N_S(f_+,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_+,z)} - \frac{n_R(z)}{n_R(z_R)}\right) - \left(\frac{N_S(f_-,z) - N_B}{N_S(f_-,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_-,z)} - \frac{n_R(z)}{n_R(z_R)}\right)}{\frac{N_S(f_a,z_R) - N_B}{N_S(f_a,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_a,z)} - \frac{n_R(z)}{n_R(z_R)}}{\frac{N_S(f_a,z_R) - N_B}{N_S(f_a,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_a,z)} - \frac{n_R(z)}{n_R(z_R)}}{\frac{N_S(f_a,z_R) - N_B}{N_S(f_a,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_a,z)} - \frac{n_R(z)}{n_R(z_R)}} - \frac{N_S(z_R)}{N_S(z_R)} \frac{N_S(z_R)}{N_S(z_R)} + \frac{N_S(z_R)}{N_S(z_R)} \frac{N_S(z_R)}{N_S(z_R)} - \frac{N_S(z_R)}{N_S(z$$

How Does Ratio Technique Work?

 \square From physics, we calculate the ratios of R_{T} and R_{W} as

$$R_T = \frac{\sigma_{eff}(f_+,z) + \sigma_{eff}(f_-,z)}{\sigma_{eff}(f_a,z)} \qquad \qquad R_W = \frac{\sigma_{eff}(f_+,z) - \sigma_{eff}(f_-,z)}{\sigma_{eff}(f_a,z)}$$

From actual photon counts, we calculate the ratios as

$$\begin{split} R_T &= \frac{N_{Norm}(f_+,z) + N_{Norm}(f_-,z)}{N_{Norm}(f_a,z)} \\ &= \frac{\left(\frac{N_S(f_+,z) - N_B}{N_S(f_+,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_+,z)} - \frac{n_R(z)}{n_R(z_R)}\right) + \left(\frac{N_S(f_-,z) - N_B}{N_S(f_-,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_-,z)} - \frac{n_R(z)}{n_R(z_R)}\right)}{\frac{N_S(f_a,z_R) - N_B}{N_S(f_a,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_a,z)} - \frac{n_R(z)}{n_R(z_R)}}{\frac{N_S(f_+,z_R) - N_B}{N_S(f_a,z_R)}} \\ = \frac{\left(\frac{N_S(f_+,z) - N_B}{N_S(f_+,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_+,z)} - \frac{n_R(z)}{n_R(z_R)}\right) - \left(\frac{N_S(f_-,z) - N_B}{N_S(f_-,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_-,z)} - \frac{n_R(z)}{n_R(z_R)}\right)}{\frac{N_S(f_a,z_R) - N_B}{N_S(f_a,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_-,z)} - \frac{n_R(z)}{n_R(z_R)}}{\frac{N_S(f_a,z_R) - N_B}{N_S(f_a,z_R) - N_B} \frac{z^2}{z_R^2} \frac{1}{T_c^2(f_-,z)} - \frac{n_R(z)}{n_R(z_R)}} \\ \end{array}$$

How Does Ratio Technique Work?

Compute Doppler calibration curves from physics

Look up these two ratios on the calibration curves to infer the corresponding Temperature and Wind from isoline/isogram.

Comparison of Calibration Curves

Different metrics of R_W result in different wind sensitivities
The ratio R_W= N₊/N₋ has inhomogeneous sensitivity

Comparison of Calibration Curves

□ The ratio $R_W = (N_+ - N_-)/N_a$ has much better uniformity than the simplest ratio

Comparison of Calibration Curves

□ The ratio $R_W = \ln(N_/N_+)/\ln(N_+N_+/N_a^2)$ has good uniformity

More Resonance Fluorescence Doppler Lidars

Besides Na, there are more metal species (K, Fe, Ca, Ca⁺, Mg, Li, ...) from meteor ablation. They can be used as tracers for Doppler lidar measurements in MLT region.

Metal Species in MLT Region

Species	Central wavelength (nm)	A_{ki} (x10 ⁸ s ⁻¹)	$\begin{array}{c} Degeneracy \\ g_k \; / \; g_i \end{array}$	Atomic Weight	Isotopes	Doppler rms Width (MHz)	$\sigma_0 (x10^{-12} cm^2)$	Abundance $(x10^9 \text{ cm}^{-2})$	Centroid Altitude (km)	Layer rms Width (km)
Na (D ₂)	589.1583	0.616	4 / 2	22.98977	23	456.54	14.87	4.0	91.5	4.6
Fe	372.0995	0.163	11 / 9	55.845	54, 56, 57, 58	463.79	0.944	10.2	88.3	4.5
K (D ₁)	770.1088	0.382	2 / 2	39.0983	39, 40, 41	267.90	13.42	4.5 x 10 ⁻²	91.0	4.7
K (D ₂)	766.702	0.387	4 / 2	39.0983	39, 40, 41	267.90	26.92	4.5 x 10 ⁻²	91.0	4.7
Ca	422.793	2.18	3 / 1	40.078	40, 42, 43, 44, 46, 48	481.96	38.48	3.4 x 10 ⁻²	90.5	3.5
Ca ⁺	393.777	1.47	4 / 2	40.078	Same as Ca	517.87	13.94	7.2 x 10 ⁻²	95.0	3.6

□ In principle, all these species can be used as trace atoms for resonance fluorescence Doppler lidar measurements.

□ Whether a Doppler lidar can be developed and used mainly depends on the availability and readiness of laser and electro-optic technologies. In addition, the constituent abundance and absorption cross-section are naturally determined.

K Atomic Parameters

Isotope	Atomic mass	Abundance	Nuclear spin	$K(D_1)$ line shift
39	38.963 706 9(3)	0.932 581(44)	I = 3/2	0
40	39.963 998 67(29)	0.000 117(1)	I = 4	125.58 MHz
41	40.961 825 97(28)	0.067 302(44)	I = 3/2	235.28 MHz

Table 5.8 Quantum Numbers, Frequency Offsets, and Relative Line Strength for $K(D_1)$ Hyperfine Structure Lines

${}^{2}S_{1/2}$	${}^{2}\mathrm{P}_{1/2}$	$^{39}K\left(MHz\right)$	$^{41}K\left(MHz\right)$	Relative Line Strength
$\overline{F\!=\!1}$	$F\!=\!2$	310	405	5/16
	$F\!=\!1$	254	375	1/16
$F\!=\!2$	$F\!=\!2$	-152	151	5/16
	$F\!=\!1$	-208	121	5/16

K Doppler Lidar Principle & Metrics

Ratio technique versus scanning technique

Scanning technique actually has its advantages on several aspects, depending on the laser system used – whether there is pedestal, background problems, etc.

Ratio technique usually gives higher resolution.

Fe Doppler Lidar Principles

Fe (iron) 372-nm line

Sensitivity Comparison of Na, K, Fe Resonance Doppler Lidars

The temperature and wind sensitivities are defined as

Errors and signal-to-noise ratio (SNR) depend on atomic properties, geophysical parameters, and lidar parameters.

□ [Gardner et al., 2004] would be a good reference (with cautions).

Summary (1)

Doppler ratio technique takes advantage of the high temporal resolution feature by limiting the lidar detection to 3 preset frequencies (usually one peak and two wing frequencies) for 3 unknown parameters (T, W, and density).

 \square By taking the ratios among signals at these three frequencies, R_T and R_W are sensitive functions of temperature and radial wind, respectively.

 \Box We compute the ratios R_T and R_W from atomic physics first to form the lidar calibration curves, and then look up the two ratios calculated from actual photon counts on the calibration curves to infer the corresponding temperature T and radial wind W.

Different metrics exhibit different inhomogeneity, resulting in different crosstalk between T and W errors.

□ There are several different atomic species originating from meteor ablation in the mesosphere and lower thermosphere (MLT) region. They all have the potentials to be tracers for resonance fluorescence Doppler lidars to measure the temperature and wind in MLT region.

□ Na and K Doppler lidars are currently near mature status and making great contributions to MLT science.

□ Fe Doppler lidar has very high future potential due to the high Fe abundance, advanced alexandrite laser technology, Dopplerfree Fe spectroscopy, and bias-free measurements, etc.

Solid-state Doppler lidars are demanded for science advancement, although dye-laser-based Na Doppler lidar is still the golden standard for now.