Lecture 11. Temperature Lidar (1) Overview and Doppler Technique

- Overview of Temperature Measurement Techniques
- Doppler Technique for Temperature and Wind Measurements
- Resonance Fluorescence Na Doppler Lidar
- Summary

Temperature Measurement Techniques

Use temperature-dependent effects or phenomena

Doppler Technique – Doppler broadening (not only for Na, K, and Fe, but also for Rayleigh scattering, as long as Doppler broadening dominate and can be detected)

Boltzmann Technique – Boltzmann distribution of atomic populations on different energy levels (not only for Fe, but also for molecular spectroscopy in optical remote sensing)

□ Integration Technique (Rayleigh or Raman) – integration lidar technique using ideal gas law and assuming hydrostatic equilibrium (not only for modern lidar, but also for cw searchlight and rocket falling sphere – some way to measure atmosphere number density)

Rotational Raman Technique – temperature dependence of population ratio, similar to Boltzmann technique

Overview: Doppler Technique

Doppler Spectrum (Doppler Broadening Width) \Rightarrow **Temperature**

Overview: Boltzmann Technique

Maxwell-Boltzmann Distribution in Thermal-dynamic Equilibrium

$$\frac{P_2(J=3)}{P_1(J=4)} = \frac{\rho_{Fe(374)}}{\rho_{Fe(372)}} = \frac{g_2}{g_1} \exp(-\Delta E/k_B T)$$

$$T = \frac{\Delta E / k_B}{ln\left(\frac{g_2}{g_1} \cdot \frac{P_1}{P_2}\right)}$$

 $P_1, P_2 - Fe$ populations $g_1, g_2 - Degeneracy$ $k_B - Boltzmann constant$ T - Temperature

Population Ratio ⇒ **Temperature**

Overview: Integration Technique

Number Density Ratio ⇒ Temperature (lidar backscatter ratio at different altitudes)

Overview: Rotation Raman Technique

Temperature can be derived from the ratio of two pure Rotational Raman line intensities. This is essentially the same principle as Boltzmann temperature technique!

Doppler Technique to Measure Temperature and Wind

Doppler effect is commonly experienced by moving particles, such as atoms, molecules, and aerosols. It is the apparent frequency change of radiation that is perceived by the particles moving relative to the source of the radiation. This is called Doppler shift.

Doppler frequency shift is proportional to the radial velocity along the line of sight (LOS) of the radiation –

$$\omega = \omega_0 - \vec{k} \cdot \vec{v} \implies \Delta \omega = \omega - \omega_0 = -\vec{k} \cdot \vec{v} = -\omega_0 \frac{v \cos \theta}{c}$$

where ω_0 is the radiation frequency at rest, ω is the shifted frequency, k is the wave vector of the radiation (k= $2\pi/\lambda$), and v is the particle velocity.

Doppler Technique to Measure Temperature and Wind

Due to particles' thermal motions in the atmosphere, the distribution of perceived frequencies for all particles mirrors their velocity distribution. According to the Maxwellian velocity distribution, the perceived frequencies by moving particles has a Gaussian lineshape, given by

$$\exp(-\frac{Mv_z^2}{2k_BT})dv_z = \exp\left\{-\frac{Mc^2(\omega-\omega_0)^2}{2\omega_0^2k_BT}\right\}\frac{c}{\omega_0}d\omega$$

D The peak is at $\omega = \omega_0$ and the rms width is give by

$$\sigma_{rms} = \frac{\omega_0}{c} \sqrt{\frac{k_B T}{M}} = \frac{1}{\lambda_0} \sqrt{\frac{k_B T}{M}}$$

Doppler Shift in Resonance Absorption

$$\Delta \omega = \omega - \omega_0 = -\vec{k} \cdot \vec{v} = -\omega_0 \frac{v \cos \theta}{c}$$

$$\xrightarrow{} \vec{v} \qquad \vec{v} \qquad \vec{v} \qquad \vec{k}$$

Emitter and receiver move towards each other:

-Blue shift in perceived radiation frequency

-Red shift in absorption peak frequency

The velocity measurements of lidar, radar, and sodar all base on the Doppler shift principle !

Doppler Broadening in Resonance Absorption Lines

$$\sigma_{rms} = \frac{\omega_0}{c} \sqrt{\frac{k_B T}{M}} = \frac{1}{\lambda_0} \sqrt{\frac{k_B T}{M}}$$

$$T \checkmark \Rightarrow \sigma_{\rm rms} \checkmark$$
$$M \checkmark \Rightarrow \sigma_{\rm rms} \checkmark$$

Doppler Shift in Rayleigh Scattering

Refer to textbook 5.2.2.4 Lidar wind vs radar wind measurements

 $\begin{array}{ll} \text{Momentum Conservation} & m\vec{\mathrm{v}}_1 + \hbar\vec{k}_1 = m\vec{\mathrm{v}}_2 + \hbar\vec{k}_2 \\ \text{Energy Conservation} & \frac{1}{2}m\mathrm{v}_1^2 + \hbar\omega_1 = \frac{1}{2}m\mathrm{v}_2^2 + \hbar\omega_2 \end{array} \end{array}$

For Rayleigh or radar backscatter signals, we have

$$\vec{k}_2 \approx -\vec{k}_1 \qquad \vec{v}_2 \approx \vec{v}_1$$

The frequency shift for Rayleigh or radar backscattering is

$$\Delta \omega_{Rayleigh, backscatter} = \omega_2 - \omega_1 = -2\vec{k}_1 \cdot \vec{v}_1$$

Doppler Broadening in Rayleigh Scatter

To derive the Doppler broadening, let's write the Doppler shift as

According to the Maxwellian velocity distribution, the relative probability that an atom/molecule in a gas at temperature T has its velocity component along the line of sight between v_R and v_R +d v_R is

$$P(v_R \rightarrow v_R + dv_R) \propto \exp\left(-Mv_R^2/2k_BT\right)dv_R$$

 \Box Substitute the v_R equation into the Maxwellian distribution,

$$I \propto \exp\left(-\frac{M(\omega_0 - \omega)^2}{2k_B T (2\omega_0/c)^2}\right) (c/2\omega_0) d\omega$$

Therefore, the rms width of the Doppler broadening is

$$\sigma_{rms} = 2\omega_0 / c \sqrt{k_B T / M} = \frac{2}{\lambda_0} \sqrt{k_B T / M}$$
 2 times !

Na Atomic Energy Levels

Doppler Effect in Na D₂ Line Resonance Fluorescence

Na D₂ absorption linewidth is temperature dependent

Na D₂ absorption peak freq is wind dependent

Na Atomic Parameters

Transition Line	Central Wavelength (nm)	$\begin{array}{c} Transition \\ Probability \\ (10^8s^{-1}) \end{array}$	Radiative Lifetime (nsec)	Oscillator Strength $f_{\rm ik}$
$\frac{D_1 \left({}^2P_{1/\;2} {\rightarrow} {}^2S_{1/2} \right)}{D_2 \left({}^2P_{3/\;2} {\rightarrow} {}^2S_{1/2} \right)}$	589.7558 589.1583	$\begin{array}{c} 0.614\\ 0.616\end{array}$	$16.29 \\ 16.23$	$0.320 \\ 0.641$
Group	$^2\mathrm{S}_{1/2}$	${}^{2}\mathrm{P}_{3/2}$	Offset (GHz)	Relative Line Strength ^a
$\overline{\mathrm{D}_{2\mathrm{b}}}$	$F\!=\!1$	$F\!=\!2$	1.0911	5/32
		$F\!=\!1$	1.0566	5/32
		$F{=}0$	1.0408	2/32
D_{2a}	$F\!=\!2$	$F\!=\!3$	-0.6216	14/32
		$F\!=\!2$	-0.6806	5/32
		$F\!=\!1$	-0.7150	1/32
Doppler-Free	e Saturation–A	Absorption Fe	atures of the N	a D ₂ Line

Table 5.1 Parameters of the Na D_1 and D_2 Transition Lines

$f_{\rm a}~({ m MHz})$	$f_{\rm c}~({ m MHz})$	$f_{\rm b}({ m MHz})$	f_+ (MHz)	f_{-} (MHz)
-651.4	187.8	1067.8	-21.4	-1281.4

^aRelative line strengths are in the absence of a magnetic field or the spatial average. When Hanle effect is considered in the atmosphere, the relative line strengths will be modified depending on the geomagnetic field and the laser polarization.

Doppler-Limited Na Spectroscopy

 \square Doppler-broadened Na absorption cross-section is approximated as a Gaussian with rms width $\sigma_{\rm D}$

$$\sigma_{abs}(\mathbf{v}) = \frac{1}{\sqrt{2\pi}\sigma_D} \frac{e^2 f}{4\varepsilon_0 m_e c} \sum_{n=1}^6 A_n \exp\left(-\frac{\left[\mathbf{v}_n - \mathbf{v}(1 - V_R/c)\right]^2}{2\sigma_D^2}\right)$$

□ Assume the laser lineshape is a Gaussian with rms width σ_L □ The effective cross-section is the convolution of the atomic absorption cross-section and the laser lineshape

$$\sigma_{eff}(\mathbf{v}) = \frac{1}{\sqrt{2\pi\sigma_e}} \frac{e^2 f}{4\varepsilon_0 m_e c} \sum_{n=1}^6 A_n \exp\left(-\frac{\left[\mathbf{v}_n - \mathbf{v}(1 - V_R/c)\right]^2}{2\sigma_e^2}\right)$$

where $\sigma_e = \sqrt{\sigma_D^2 + \sigma_L^2}$ and $\sigma_D = \sqrt{\frac{k_B T}{M\lambda_0^2}}$

The frequency discriminator/analyzer is in the atmosphere!!!

Doppler Scanning Technique

$$N_{Na}(\lambda,z) = \left(\frac{P_L(\lambda)\Delta t}{hc/\lambda}\right) \left(\sigma_{eff}(\lambda)n_{Na}(z)\Delta z\right) \left(\frac{A}{4\pi z^2}\right) \left(\eta(\lambda)T_a^2(\lambda)T_c^2(\lambda,z)G(z)\right)$$

$$N_R(\lambda,z_R) = \left(\frac{P_L(\lambda)\Delta t}{hc/\lambda}\right) \left(\sigma_R(\pi,\lambda)n_R(z_R)\Delta z\right) \left(\frac{A}{z_R^2}\right) \left(\eta(\lambda)T_a^2(\lambda,z_R)G(z_R)\right)$$

$$\sigma_{eff}(\lambda,z) = \frac{C(z)}{T_c^2(\lambda,z)} \frac{N_{Na}(\lambda,z)}{N_R(\lambda,z_R)}$$
where $C(z) = \frac{\sigma_R(\pi,\lambda)n_R(z_R)}{n_{Na}(z)} \frac{4\pi z^2}{z_R^2}$

Scanning Na Lidar Results

Doppler-Free Na Spectroscopy

Relative signal

See detailed explanation on Na Doppler-free saturation-fluorescence spectroscopy in Textbook Chapter 5.2.2.3.2

 $v_{c} = (v_{a} + v_{b})/2$

Doppler Ratio Technique: 2-Frequency

$$R_T(z) = \frac{N_{norm}(f_c, z, t_1)}{N_{norm}(f_a, z, t_2)} = \frac{\sigma_{eff}(f_c, z)n_{Na}(z, t_1)}{\sigma_{eff}(f_a, z)n_{Na}(z, t_2)} \approx \frac{\sigma_{eff}(f_c, z)}{\sigma_{eff}(f_a, z)}$$

$$N_{norm}(f,z,t) = \frac{N_{Na}(f,z,t)}{N_{R}(f,z,t)T_{c}^{2}(f,z)}$$

$$N_{norm}(f,z,t) = \frac{\sigma_{eff}(f)n_{Na}(z)}{\sigma_R(\pi,f)n_R(z_R)} \frac{z_R^2}{4\pi z^2}$$

Na Doppler Lidar Calibration Curves

Main Ideas Behind Ratio Technique

□ Three unknown parameters (temperature, radial wind, and Na number density) require 3 lidar equations at 3 frequencies as minimum ⇒ highest resolution.

 $\hfill In$ the ratio technique, Na number density is cancelled out. So we have two ratios R_T and R_W that are independent of Na density but both dependent on T and W.

□ The idea is to derive temperature and radial wind from these two ratios first, and then derive Na number density using computed temperature and wind at each altitude bin.

□ However, because the Na extinction coefficient is involved, the upper bins are related to lower bins, and extinction coefficient is related to Na density and effective cross-section. The solution is to start from the bottom of the Na layer and then work bin by bin to the layer top.

Summary

□ The key point to measure temperature is to find and use temperature-dependent effects and phenomena to make measurements.

Doppler technique utilizes the Doppler effect (frequency shift and linewidth broadening) by moving particles to infer wind and temperature information. It is widely applied in lidar, radar and sodar technique as well as passive optical remote sensing.

Resonance fluorescence Doppler lidar technique applies scanning or ratio technique to infer the temperature and wind from the Doppler spectroscopy, while the Doppler spectroscopy is inferred from intensity ratio at different frequencies.

HWK Project #2 Assignment – Cross-sections and calibration curves. Due on Friday, October 3, 2008