
Lecture 06. Fundamentals of
Lidar Remote Sensing (4)

 Review physical processes in lidar equation
 Example calculation in physical processes
 Solution for scattering form lidar equation
 Solution for fluorescence form lidar equation
 Solution for differential absorption lidar equation
 Solution for resonance fluorescence lidar
 Solution for Rayleigh and Mie lidar
 Summary
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Scattering by Molecules in Atmosphere
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Boltzmann Distribution
 Maxwell-Boltzmann distribution is the law of particle
population distribution according to energy levels (under
thermodynamic equilibrium)
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N1 and N2 - particle populations on energy levels E1 and E2
g1 and g2 - degeneracy for energy levels E1 and E2, ΔE = E2 - E1
kB - Boltzmann constant, T - Temperature, N - total population! 
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Boltzmann Technique

Atomic Fe Energy Level
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Example: Fe Boltzmann
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Doppler Shift and Broadening
 Doppler Technique - Doppler linewidth broadening and
Doppler frequency shift are temperature-dependent and
wind-dependent, respectively (applying to both Na, K, Fe
resonance fluorescence and molecular scattering)
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Doppler Shift and Broadening



Absorption and Fluorescence
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Backscatter Cross-Section Comparison

Two-photon process
Inelastic scattering, instantaneous

10-30 cm2sr-1Raman Scattering

Two-photon process
Elastic scattering, instantaneous

10-27 cm2sr-1Rayleigh Scattering

Two single-photon process
Inelastic scattering, delayed (lifetime)

10-19 cm2sr-1Fluorescence from
molecule, liquid, solid

Single-photon process10-19 cm2sr-1Molecular Absorption

Two single-photon process (absorption
and spontaneous emission)
Delayed (radiative lifetime)

10-13 cm2sr-1Resonance Fluorescence

Two-photon process
Elastic scattering, instantaneous

10-8 - 10-10 cm2sr-1Mie (Aerosol) Scattering
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Rayleigh Backscatter Coefficient
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Rayleigh Backscatter Cross Section
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 For Rayleigh lidar, λ = 532 nm,  6.22 x 10-32 m2sr-1



Absorption Cross-Section for Atoms
Atomic absorption cross section σabs

for Na 589-nm D2 line is about 10-15 m2

for Fe 372-nm line is about 10-16 m2

How do you derive the backscatter cross section?
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Polarization in Scattering
 Depolarization can be resulted from
(1) Non-spherical particle shape (true for both aerosol/cloud

and atmosphere molecules)
(2) Inhomogeneous refraction index
(3) Multiple scattering inside particle
 The range-resolved linear depolarization ratio is defined

from lidar or optical observations as
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β and T are the backscattering coefficients and atmospheric transmittances.
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where P and I are the light power and
intensity detected, respectively.

 According to Gary Gimmestad, the following definition is
misleading:



Review Lidar Equation
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 General lidar equation with angular scattering coefficient

 General lidar equation with total scattering coefficient
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 General lidar equation in angular scattering coefficient β and
extinction coefficient α form



Specific Lidar Equations

! 

NS (" ,R) =
PL (")#t

hc "

$ 

% 
& 

' 

( 
) *(" ,R)#R( )

A

R
2

$ 

% 
& 

' 

( 
) T
2
(" ,R) +(")G(R)( )+NB

! 

NS (" ,R) =
PL (")#t

hc "

$ 

% 
& 

' 

( 
) * eff (" ,R)nc (z)RB(")#R( )

A

4+R2
$ 

% 
& 

' 

( 
) Ta

2
(" ,R)Tc

2
(" ,R)( ) ,(")G(R)( )+NB

 Lidar equation for Rayleigh lidar

 Lidar equation for resonance fluorescence lidar

 Lidar equation for differential absorption lidar
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General Lidar Equation

 NS - expected photon counts detected at λ and distance R;
 1st term - number of transmitted laser photons;
 2nd term - probability that a transmitted photon is scattered
by the scatters into a unit solid angle at angle θ;
 3rd term - probability that a scatter photon is collected by
the receiving telescope;
 4th term - light transmission during light propagation from
laser source to distance R and from distance R to receiver;
 5th term - overall system efficiency;
 6th term - background and detector noise.

Assumptions: independent and single scattering
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More in General Lidar Equation

NS (R) - expected received photon number from a distance R
PL - transmitted laser power, λL - laser wavelength
Δt - integration time,
h - Planck’s constant, c - light speed
β(R) - volume scatter coefficient at distance R for angle θ,
ΔR - thickness of the range bin
A - area of receiver,
T(R) - one way transmission of the light from laser source to
distance R or from distance R to the receiver,
η - system optical efficiency,
G(R) - geometrical factor of the system,
NB - background and detector noise photon counts.
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Solution for
Scattering Form Lidar Equation

 Solution for scattering form lidar equation
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 Scattering form lidar equation
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Solution for
Fluorescence Form Lidar Equation
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 Solution for fluorescence form lidar equation! 
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 Fluorescence form lidar equation



Differential Absorption/Scattering Form
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 For the laser with wavelength λon on the molecular
absorption line
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 For the laser with wavelength λoff off the molecular
absorption line



Differential Absorption/Scattering Form
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 The ratio of photon counts from these two channels is a
function of the differential absorption and scattering:
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Solution for
Differential Absorption Lidar Equation
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 Solution for differential absorption lidar equation



Solution for
Resonance Fluorescence Lidar Equation

! 

NS (" ,z) =
PL (")#t

hc "

$ 

% 
& 

' 

( 
) * eff (" ,z)nc(z)RB (")#z( )

A

4+z2

$ 

% 
& 

' 

( 
) Ta

2
(")Tc

2
(" ,z)( ) ,(")G(z)( )+NB

! 

NR (" ,zR ) =
PL (")#t

hc "

$ 

% 
& 

' 

( 
) *R (+ ,")nR (zR )#z( )

A

zR
2

$ 

% 
& 
& 

' 

( 
) 
) Ta

2
(" ,zR ) ,(")G(zR )( )+NB

! 

nc(z)

nR (zR )
=
NS (" ,z) #NB

NR (" ,zR ) #NB
$
z
2

zR
2
$
4%&R (% ,")

&eff (" ,z)RB (")
$

Ta
2
(" ,zR )G(zR )

Ta
2
(" ,z)Tc

2
(" ,z)G(z)

! 

nc(z) = nR (zR )
NS (" ,z) #NB

NR (" ,zR ) #NB
$
z
2

zR
2
$
4%&R (% ,")

& eff (" ,z)RB (")
$

1

Tc
2
(" ,z)

 Resonance fluorescence and Rayleigh lidar equations

 Rayleigh normalization

 Solution for resonance fluorescence



Solution for
Rayleigh and Mie Lidars
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 Rayleigh and Mie (middle atmos) lidar equations

 Rayleigh normalization

 For Rayleigh scattering at z and zR
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Solution (Continued)
 Solution for Mie scattering in middle atmosphere

 Solution for relative number density in Rayleigh lidar
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 Rayleigh normalization when aerosols not present



Summary
 Solutions of lidar equation can be obtained by solving
the lidar equation directly if all the lidar parameters and
atmosphere conditions are well known.
 Solutions for three forms of lidar equations are shown:
scattering form, fluorescence form, and differential
absorption form.
 However, system parameters and atmosphere conditions
may vary frequently and are NOT well known to
experimenters.
 A good solution is to perform Rayleigh normalization to
cancel out most of the system and atmosphere parameters
so that the essential and known parts can be solved.


