Lecture 06. Fundamentals of Lidar Remote Sensing (4)

\square Review physical processes in lidar equation
\square Example calculation in physical processes
\square Solution for scattering form lidar equation
\square Solution for fluorescence form lidar equation
\square Solution for differential absorption lidar equation
\square Solution for resonance fluorescence lidar
\square Solution for Rayleigh and Mie lidar
Summary

Physical Process

Scattering by Molecules in Atmosphere

Boltzmann Distribution

Maxwell-Boltzmann distribution is the law of particle population distribution according to energy levels (under thermodynamic equilibrium)

$$
\frac{N_{k}}{N}=\frac{g_{k} \exp \left(-E_{k} / k_{B} T\right)}{\sum_{i} g_{i} \exp \left(-E_{i} / k_{B} T\right)}
$$

$$
\begin{gathered}
\frac{N_{2}}{N_{1}}=\frac{g_{2}}{g_{1}} \exp \left\{-\left(E_{2}-E_{1}\right) / k_{B} T\right\} \\
T=\frac{\Delta E / k_{B}}{\ln \left(\frac{g_{2}}{g_{1}} \cdot \frac{N_{1}}{N_{2}}\right)} \\
\hline
\end{gathered}
$$

N_{1} and N_{2}-particle populations on energy levels E_{1} and E_{2} g_{1} and g_{2} - degeneracy for energy levels E_{1} and $E_{2}, \Delta E=E_{2}-E_{1}$ K_{B} - Boltzmann constant, T - Temperature, N - total population

Population Ratio \Rightarrow Temperature

Boltzmann Technique

Atomic Fe Energy Level
[Gelbwachs, 1994; Chu et al., 2002]

Example: Fe Boltzmann

$$
\begin{aligned}
& \frac{N(J=4)}{N(J=3)}=\frac{g_{1}}{g_{2}} \exp \left\{\Delta E / k_{B} T\right\} \\
& g_{1}=2 * 4+1=9 \\
& g_{2}=2 * 3+1=7 \\
& \Delta E=416\left(\mathrm{~cm}^{-1}\right) \\
& =h c \times 416 \times 100(J) \\
& \Delta E / k_{B}=598.43 K
\end{aligned}
$$

For $T=200$,

$$
\frac{N(J=4)}{N(J=3)}=\frac{9}{7} e^{598.43 / 200}=25.6
$$

Doppler Shift and Broadening

\square Doppler Technique - Doppler linewidth broadening and Doppler frequency shift are temperature-dependent and wind-dependent, respectively (applying to both $\mathrm{Na}, \mathrm{K}, \mathrm{Fe}$ resonance fluorescence and molecular scattering)

$$
\sigma_{r m s}=\frac{\omega_{0}}{c} \sqrt{\frac{k_{B} T}{M}}=\frac{1}{\lambda_{0}} \sqrt{\frac{k_{B} T}{M}}
$$

$$
\Delta \omega=\omega-\omega_{0}=-\vec{k} \cdot \vec{v}=-\omega_{0} \frac{v \cos \theta}{c}
$$

Doppler Shift and Broadening

Absorption and Fluorescence

Backscatter Cross-Section Comparison

Physical Process	Backscatter Cross-Section	Mechanism
Mie (Aerosol) Scattering	$10^{-8}-10^{-10} \mathrm{~cm}^{2} \mathrm{sr}^{-1}$	Two-photon process Elastic scattering, instantaneous
Resonance Fluorescence	$10^{-13} \mathrm{~cm}^{2} \mathrm{sr}^{-1}$	Two single-photon process (absorption and spontaneous emission) Delayed (radiative lifetime)
Molecular Absorption	$10^{-19} \mathrm{~cm}^{2} \mathrm{sr}^{-1}$	Single-photon process
Fluorescence from molecule, liquid, solid	$10^{-19} \mathrm{~cm}^{2} \mathrm{sr}^{-1}$	Two single-photon process Inelastic scattering, delayed (lifetime)
Rayleigh Scattering	$10^{-27} \mathrm{~cm}^{2} \mathrm{sr}^{-1}$	Two-photon process Elastic scattering, instantaneous
Raman Scattering	$10^{-30} \mathrm{~cm}^{2} \mathrm{sr}^{-1}$	Two-photon process Inelastic scattering, instantaneous

Rayleigh Backscatter Coefficient

$$
\beta_{\text {Rayleigh }}(\lambda, z, \theta=\pi)=2.938 \times 10^{-32} \frac{P(z)}{T(z)} \cdot \frac{1}{\lambda^{4.0117}}\left(m^{-1} s r^{-1}\right)
$$

P in mbar and T in Kelvin at altitude z, λ in meter.

$$
\beta(\theta)=\frac{\beta_{T}}{4 \pi} P(\theta)=\frac{\beta_{T}}{4 \pi} \times 0.7629 \times\left(1+0.9324 \cos ^{2} \theta\right)
$$

Rayleigh Backscatter Cross Section

$$
\frac{d \sigma_{m}(\lambda)}{d \Omega}=5.45 \cdot\left(\frac{550}{\lambda}\right)^{4} \times 10^{-32}\left(m^{2} s r^{-1}\right)
$$

where λ is the wavelength in nm .
\square For Rayleigh lidar, $\lambda=532 \mathrm{~nm}, \Rightarrow 6.22 \times 10^{-32} \mathrm{~m}^{2} \mathrm{sr}^{-1}$

Absorption Cross-Section for Atoms

Atomic absorption cross section $\sigma_{a b s}$ for $\mathrm{Na} 589-\mathrm{nm}$ D2 line is about $10^{-15} \mathrm{~m}^{2}$ for $\mathrm{Fe} 372-\mathrm{nm}$ line is about $10^{-16} \mathrm{~m}^{2}$

How do you derive the backscatter cross section?

$$
\begin{aligned}
\frac{d \sigma_{m}}{d \Omega}(\theta= & \pi)=\frac{\sigma_{a b s}}{4 \pi}=\frac{10^{-15} \mathrm{~m}^{2}}{4 \pi} \\
& =7.95 \times 10^{-16} \mathrm{~m}^{2} \mathrm{sr}^{-1}=7.95 \times 10^{-12} \mathrm{~cm}^{2} \mathrm{sr}^{-1}
\end{aligned}
$$

Polarization in Scattering

\square Depolarization can be resulted from
(1) Non-spherical particle shape (true for both aerosol/cloud and atmosphere molecules)
(2) Inhomogeneous refraction index
(3) Multiple scattering inside particle
\square The range-resolved linear depolarization ratio is defined from lidar or optical observations as
$\delta(R)=\frac{P_{\perp}}{P_{\|}}=\frac{I_{\perp}}{I_{\|}}$
where P and I are the light power and intensity detected, respectively.
\square According to Gary Gimmestad, the following definition is misleading:

$$
\delta(R)=\left[\beta_{\perp}(R) / \beta_{\|}(R)\right] \exp \left(T_{\|}-T_{\perp}\right)
$$

β and T are the backscattering coefficients and atmospheric transmittances.

Review Lidar Equation

\square General lidar equation with angular scattering coefficient
$N_{S}(\lambda, R)=N_{L}\left(\lambda_{L}\right) \cdot\left[\beta\left(\lambda, \lambda_{L}, \theta, R\right) \Delta R\right] \cdot \frac{A}{R^{2}} \cdot\left[T\left(\lambda_{L}, R\right) T(\lambda, R)\right] \cdot\left[\eta\left(\lambda, \lambda_{L}\right) G(R)\right]+N_{B}$
\square General lidar equation with total scattering coefficient

$$
N_{S}(\lambda, R)=N_{L}\left(\lambda_{L}\right) \cdot\left[\beta_{T}\left(\lambda, \lambda_{L}, R\right) \Delta R\right] \cdot \frac{A}{4 \pi R^{2}} \cdot\left[T\left(\lambda_{L}, R\right) T(\lambda, R)\right] \cdot\left[\eta\left(\lambda, \lambda_{L}\right) G(R)\right]+N_{B}
$$

\square General lidar equation in angular scattering coefficient β and extinction coefficient α form

$$
\begin{aligned}
& N_{S}(\lambda, R)=\left[\frac{P_{L}\left(\lambda_{L}\right) \Delta t}{h c / \lambda_{L}}\right]\left[\beta\left(\lambda, \lambda_{L}, \theta, R\right) \Delta R\right]\left(\frac{A}{R^{2}}\right) \\
& \quad \cdot \exp \left[-\int_{0}^{R} \alpha\left(\lambda_{L}, r^{\prime}\right) d r^{\prime}\right] \exp \left[-\int_{0}^{R} \alpha\left(\lambda, r^{\prime}\right) d r^{\prime}\right]\left[\eta\left(\lambda, \lambda_{L}\right) G(R)\right]+N_{B}
\end{aligned}
$$

Specific Lidar Equations

\square Lidar equation for Rayleigh lidar

$$
N_{S}(\lambda, R)=\left(\frac{P_{L}(\lambda) \Delta t}{h c / \lambda}\right)(\beta(\lambda, R) \Delta R)\left(\frac{A}{R^{2}}\right) T^{2}(\lambda, R)(\eta(\lambda) G(R))+N_{B}
$$

L Lidar equation for resonance fluorescence lidar
$N_{S}(\lambda, R)=\left(\frac{P_{L}(\lambda) \Delta t}{h c / \lambda}\right)\left(\sigma_{e f f}(\lambda, R) n_{c}(z) R_{B}(\lambda) \Delta R\right)\left(\frac{A}{4 \pi R^{2}}\right)\left(T_{a}^{2}(\lambda, R) T_{c}^{2}(\lambda, R)\right)(\eta(\lambda) G(R))+N_{B}$
\square Lidar equation for differential absorption lidar

$$
\begin{aligned}
N_{S}\left(\lambda_{o n}^{\text {off }}, R\right) & =N_{L}\left(\lambda_{o n}^{\text {off }}\right)\left[\beta_{s c a}\left(\lambda_{o n}^{\text {off }}, R\right) \Delta R\right]\left(\frac{A}{R^{2}}\right) \exp \left[-2 \int_{0}^{z} \bar{\alpha}\left(\lambda_{o n}^{o f f}, r^{\prime}\right) d r^{\prime}\right] \\
& \times \exp \left[-2 \int_{0}^{z} \sigma_{a b s}\left(\lambda_{o n}^{\text {off }}, r^{\prime}\right) n_{c}\left(r^{\prime}\right) d r^{\prime}\right]\left[\eta\left(\lambda_{o n}^{\text {off }}\right) G(R)\right]+N_{B}
\end{aligned}
$$

General Lidar Equation

Assumptions: independent and single scattering

$$
N_{S}(\lambda, R)=N_{L}\left(\lambda_{L}\right) \cdot\left[\beta\left(\lambda, \lambda_{L}, \theta, R\right) \Delta R\right] \cdot \frac{A}{R^{2}} \cdot\left[T\left(\lambda_{L}, R\right) T(\lambda, R)\right] \cdot\left[\eta\left(\lambda, \lambda_{L}\right) G(R)\right]+N_{B}
$$

$\square N_{s}$ - expected photon counts detected at λ and distance R;
\square 1st term - number of transmitted laser photons;
\square 2nd term - probability that a transmitted photon is scattered by the scatters into a unit solid angle at angle θ;
3rd term - probability that a scatter photon is collected by the receiving telescope;
$\square 4$ th term - light transmission during light propagation from laser source to distance R and from distance R to receiver;
5th term - overall system efficiency;
\square 6th term - background and detector noise.

More in General Lidar Equation

$$
N_{S}(\lambda, R)=\left[\frac{P_{L}\left(\lambda_{L}\right) \Delta t}{h c / \lambda_{L}}\right] \cdot\left[\beta\left(\lambda, \lambda_{L}, \theta, R\right) \Delta R\right] \cdot \frac{A}{R^{2}} \cdot\left[T\left(\lambda_{L}, R\right) T(\lambda, R)\right] \cdot\left[\eta\left(\lambda, \lambda_{L}\right) G(R)\right]+N_{B}
$$

$N_{S}(R)$ - expected received photon number from a distance R
P_{L} - transmitted laser power, λ_{L} - laser wavelength
Δt - integration time,
h - Planck's constant, c-light speed
$\beta(R)$ - volume scatter coefficient at distance R for angle θ,
$\Delta \mathrm{R}$ - thickness of the range bin
A - area of receiver,
$T(R)$ - one way transmission of the light from laser source to distance R or from distance R to the receiver,
η - system optical efficiency,
$G(R)$ - geometrical factor of the system,
N_{B} - background and detector noise photon counts.

Solution for Scattering Form Lidar Equation

\square Scattering form lidar equation

$$
N_{S}(\lambda, R)=\left[\frac{P_{L}\left(\lambda_{L}\right) \Delta t}{h c / \lambda_{L}}\right] \cdot\left[\beta\left(\lambda, \lambda_{L}, R\right) \Delta R\right] \cdot\left[\frac{A}{R^{2}}\right] \cdot\left[T\left(\lambda_{L}, R\right) T(\lambda, R)\right] \cdot\left[\eta\left(\lambda, \lambda_{L}\right) G(R)\right]+N_{B}
$$

\square Solution for scattering form lidar equation

$$
\beta\left(\lambda, \lambda_{L}, R\right)=\frac{N_{S}(\lambda, R)-N_{B}}{\left[\frac{P_{L}\left(\lambda_{L}\right) \Delta t}{h c / \lambda_{L}}\right] \Delta R\left(\frac{A}{R^{2}}\right)\left[T\left(\lambda_{L}, R\right) T(\lambda, R)\right]\left[\eta\left(\lambda, \lambda_{L}\right) G(R)\right]}
$$

Solution for
 Fluorescence Form Lidar Equation

Fluorescence form lidar equation
$N_{S}(\lambda, R)=\left(\frac{P_{L}(\lambda) \Delta t}{h c / \lambda}\right)\left(\sigma_{e f f}(\lambda, R) n_{c}(R) R_{B}(\lambda) \Delta R\right)\left(\frac{A}{4 \pi R^{2}}\right)\left(T_{a}^{2}(\lambda, R) T_{c}^{2}(\lambda, R)\right)(\eta(\lambda) G(R))+N_{B}$
\square Solution for fluorescence form lidar equation

$$
n_{c}(R)=\frac{N_{S}(\lambda, R)-N_{B}}{\left(\frac{P_{L}(\lambda) \Delta t}{h c / \lambda}\right)\left(\sigma_{e f f}(\lambda) R_{B}(\lambda) \Delta R\right)\left(\frac{A}{4 \pi R^{2}}\right)\left(\eta(\lambda) T_{a}^{2}(\lambda, R) T_{c}^{2}(\lambda, R) G(R)\right)}
$$

Differential Absorption/Scattering Form

\square For the laser with wavelength $\lambda_{\text {on }}$ on the molecular absorption line

$$
\begin{aligned}
N_{S}\left(\lambda_{o n}, R\right) & =N_{L}\left(\lambda_{o n}\right)\left[\beta_{s c a}\left(\lambda_{o n}, R\right) \Delta R\right]\left(\frac{A}{R^{2}}\right) \exp \left[-2 \int_{0}^{R} \bar{\alpha}\left(\lambda_{o n}, r^{\prime}\right) d r^{\prime}\right] \\
& \times \exp \left[-2 \int_{0}^{R} \sigma_{a b s}\left(\lambda_{o n}, r^{\prime}\right) n_{c}\left(r^{\prime}\right) d r^{\prime}\right]\left[\eta\left(\lambda_{o n}\right) G(R)\right]+N_{B}
\end{aligned}
$$

\square For the laser with wavelength $\lambda_{\text {off }}$ off the molecular absorption line

$$
\begin{aligned}
N_{S}\left(\lambda_{o f f}, R\right) & =N_{L}\left(\lambda_{\text {off }}\right)\left[\beta_{\text {sca }}\left(\lambda_{o f f}, R\right) \Delta R\right]\left(\frac{A}{R^{2}}\right) \exp \left[-2 \int_{0}^{R} \bar{\alpha}\left(\lambda_{o f f}, r^{\prime}\right) d r^{\prime}\right] \\
& \times \exp \left[-2 \int_{0}^{R} \sigma_{a b s}\left(\lambda_{o f f}, r^{\prime}\right) n_{c}\left(r^{\prime}\right) d r^{\prime}\right]\left[\eta\left(\lambda_{o f f}\right) G(R)\right]+N_{B}
\end{aligned}
$$

Differential Absorption/Scattering Form

\square The ratio of photon counts from these two channels is a function of the differential absorption and scattering:

$$
\left.\begin{array}{rl}
\frac{N_{S}\left(\lambda_{o n}, R\right)}{N_{S}\left(\lambda_{o f f}, R\right)}-N_{B} & N_{B}
\end{array}=\frac{N_{L}\left(\lambda_{o n}\right) \beta_{s c a}\left(\lambda_{o n}, R\right)}{N_{L}\left(\lambda_{o f f}\right) \beta_{s c a}\left(\lambda_{o f f}, R\right)} \frac{\eta\left(\lambda_{o n}\right)}{\eta\left(\lambda_{o f f}\right)}\right)
$$

$$
\Delta \sigma=\sigma_{a b s}\left(\lambda_{o n}\right)-\sigma_{a b s}\left(\lambda_{o f f}\right)
$$

Solution for

Differential Absorption Lidar Equation

\square Solution for differential absorption lidar equation

$$
n_{c}(R)=\frac{1}{2 \Delta \sigma} \frac{d}{d R}\left\{\begin{array}{c}
\ln \left[\frac{N_{L}\left(\lambda_{o n}\right) \beta_{s c a}\left(\lambda_{o n}, R\right)}{N_{L}\left(\lambda_{o f f}\right) \beta_{s c a}\left(\lambda_{o f f}, R\right)} \frac{\eta\left(\lambda_{o n}\right)}{\eta\left(\lambda_{o f f}\right)}\right] \\
-\ln \left[\frac{N_{S}\left(\lambda_{o n}, R\right)-N_{B}}{N_{S}\left(\lambda_{o f f}, R\right)-N_{B}}\right] \\
-2 \int_{0}^{R}\left[\bar{\alpha}\left(\lambda_{o n}, r^{\prime}\right)-\bar{\alpha}\left(\lambda_{o f f}, r^{\prime}\right)\right] d r^{\prime}
\end{array}\right\}
$$

$$
\Delta \sigma=\sigma_{a b s}\left(\lambda_{o n}\right)-\sigma_{a b s}\left(\lambda_{o f f}\right)
$$

Solution for

Resonance Fluorescence Lidar Equation

\square Resonance fluorescence and Rayleigh lidar equations

$$
N_{S}(\lambda, z)=\left(\frac{P_{L}(\lambda) \Delta t}{h c / \lambda}\right)\left(\sigma_{e f f}(\lambda, z) n_{c}(z) R_{B}(\lambda) \Delta z\right)\left(\frac{A}{4 \pi z^{2}}\right)\left(T_{a}^{2}(\lambda) T_{c}^{2}(\lambda, z)\right)(\eta(\lambda) G(z))+N_{B}
$$

$$
N_{R}\left(\lambda, z_{R}\right)=\left(\frac{P_{L}(\lambda) \Delta t}{h c / \lambda}\right)\left(\sigma_{R}(\pi, \lambda) n_{R}\left(z_{R}\right) \Delta z\right)\left(\frac{A}{z_{R}^{2}}\right) T_{a}^{2}\left(\lambda, z_{R}\right)\left(\eta(\lambda) G\left(z_{R}\right)\right)+N_{B}
$$

\square Rayleigh normalization

$$
\frac{n_{c}(z)}{n_{R}\left(z_{R}\right)}=\frac{N_{S}(\lambda, z)-N_{B}}{N_{R}\left(\lambda, z_{R}\right)-N_{B}} \cdot \frac{z^{2}}{z_{R}^{2}} \cdot \frac{4 \pi \sigma_{R}(\pi, \lambda)}{\sigma_{e f f}(\lambda, z) R_{B}(\lambda)} \cdot \frac{T_{a}^{2}\left(\lambda, z_{R}\right) G\left(z_{R}\right)}{T_{a}^{2}(\lambda, z) T_{c}^{2}(\lambda, z) G(z)}
$$

\square Solution for resonance fluorescence

$$
n_{c}(z)=n_{R}\left(z_{R}\right) \frac{N_{S}(\lambda, z)-N_{B}}{N_{R}\left(\lambda, z_{R}\right)-N_{B}} \cdot \frac{z^{2}}{z_{R}^{2}} \cdot \frac{4 \pi \sigma_{R}(\pi, \lambda)}{\sigma_{e f f}(\lambda, z) R_{B}(\lambda)} \cdot \frac{1}{T_{c}^{2}(\lambda, z)}
$$

Solution for Rayleigh and Mie Lidars

\square Rayleigh and Mie (middle atmos) lidar equations

$$
\begin{aligned}
& N_{S}(\lambda, z)=\left(\frac{P_{L}(\lambda) \Delta t}{h c / \lambda}\right)\left(\beta_{R}(z)+\beta_{\text {aerosol }}(z)\right) \Delta z\left(\frac{A}{z^{2}}\right) T_{a}^{2}(\lambda, z)(\eta(\lambda) G(z))+N_{B} \\
& N_{R}\left(\lambda, z_{R}\right)=\left(\frac{P_{L}(\lambda) \Delta t}{h c / \lambda}\right)\left(\beta_{R}\left(z_{R}\right) \Delta z\right)\left(\frac{A}{z_{R}^{2}}\right) T_{a}^{2}\left(\lambda, z_{R}\right)\left(\eta(\lambda) G\left(z_{R}\right)\right)+N_{B}
\end{aligned}
$$

\square Rayleigh normalization

$$
\frac{\beta_{R}(z)+\beta_{\text {aerosol }}(z)}{\beta_{R}\left(z_{R}\right)}=\frac{N_{S}(\lambda, z)-N_{B}}{N_{R}\left(\lambda, z_{R}\right)-N_{B}} \cdot \frac{z^{2}}{z_{R}^{2}} \cdot \frac{T_{A}^{2}\left(\lambda, z_{R}\right) G\left(z_{R}\right)}{T_{a}^{2}(\lambda, z) G(z)}
$$

\square For Rayleigh scattering at z and z_{R}

$$
\frac{\beta_{R}(z)}{\beta_{R}\left(z_{R}\right)}=\frac{\sigma_{R}(z) n_{\text {atm }}(z)}{\sigma_{R}\left(z_{R}\right) n_{\text {atm }}\left(z_{R}\right)}=\frac{n_{\text {atm }}(z)}{n_{\text {atm }}\left(z_{R}\right)}
$$

Solution (Continued)

\square Solution for Mie scattering in middle atmosphere

$$
\beta_{\text {aerosol }}(z)=\beta_{R}\left(z_{R}\right)\left[\frac{N_{S}(\lambda, z)-N_{B}}{N_{R}\left(\lambda, z_{R}\right)-N_{B}} \cdot \frac{z^{2}}{z_{R}^{2}}-\frac{n_{\text {atm }}(z)}{n_{\text {atm }}\left(z_{R}\right)}\right]
$$

$$
\beta_{R}\left(\lambda, z_{R}, \pi\right)=2.938 \times 10^{-32} \frac{P\left(z_{R}\right)}{T\left(z_{R}\right)} \cdot \frac{1}{\lambda^{4.0117}}\left(m^{-1} s r^{-1}\right)
$$

\square Rayleigh normalization when aerosols not present

$$
\frac{\beta_{R}(z)}{\beta_{R}\left(z_{R}\right)}=\frac{N_{S}(\lambda, z)-N_{B}}{N_{R}\left(\lambda, z_{R}\right)-N_{B}} \cdot \frac{z^{2}}{z_{R}^{2}} \cdot \frac{T_{a}^{2}\left(\lambda, z_{R}\right) G\left(z_{R}\right)}{T_{a}^{2}(\lambda, z) G(z)}
$$

Solution for relative number density in Rayleigh lidar

$$
R N D(z)=\frac{n_{a t m}(z)}{n_{a t m}\left(z_{R}\right)}=\frac{\beta_{R}(z)}{\beta_{R}\left(z_{R}\right)}=\frac{N_{S}(\lambda, z)-N_{B}}{N_{R}\left(\lambda, z_{R}\right)-N_{B}} \cdot \frac{z^{2}}{z_{R}^{2}}
$$

Summary

\square Solutions of lidar equation can be obtained by solving the lidar equation directly if all the lidar parameters and atmosphere conditions are well known.
\square Solutions for three forms of lidar equations are shown: scattering form, fluorescence form, and differential absorption form.
\square However, system parameters and atmosphere conditions may vary frequently and are NOT well known to experimenters.
\square A good solution is to perform Rayleigh normalization to cancel out most of the system and atmosphere parameters so that the essential and known parts can be solved.

