Lecture 16. Temperature Lidar (5) Boltzmann Technique

Introduction

Boltzmann temperature technique

Fe Boltzmann temperature lidar

N₂+ Boltzmann temperature lidar

□ Summary

Introduction

Resonance fluorescence lidar technique can be used in MLT region, and also extended to thermosphere on molecular species, like N_2^+

Boltzmann Temperature Technique

Boltzmann distribution is the law of particle population distribution according to energy levels under thermodynamic equilibrium (Maxwell-Boltzmann distribution law)

 N_1 and N_2 - particle populations on energy levels E_1 and E_2 g_1 and g_2 - degeneracy for energy levels E_1 and E_2 , $\Delta E = E_2 - E_1$ k_B - Boltzmann constant, T - Temperature, N - total population

Population Ratio ⇒ **Temperature**

Fe Atomic Energy Levels

Fluorescence Intensity Ratio => Population Ratio => Temperature

Fe Atomic Parameters

Table 5.3Isotopic Data of Fe Atoms

	$^{54}\mathrm{Fe}$	$^{56}\mathrm{Fe}$	$^{57}\mathrm{Fe}$	$^{58}\mathrm{Fe}$
\overline{Z}	26	26	26	26
A	54	56	57	58
Nuclear spin	0	0	1/2	0
Natural abundance	5.845%	91.754%	2.119%	0.282%

Table 5.4 Fe Resonance Line Parameters

Transition wavelength λ	372.0993 nm	$373.8194\mathrm{nm}$
Degeneracy for ground state	$g_1 = 9$	$g_2 = 7$
Degeneracy for excited state	$g_{1'} = 11$	$g_{2'} = 9$
Radiative lifetime of excited state (ns)	61.0	63.6
Einstein coefficient $A_{\rm ki}$ (10 ⁸ s ⁻¹)	0.163	0.142
Oscillator strength f_{ik}	0.0413	0.0382
Branching ratio $R_{ m B}$	0.9959	0.9079
$\sigma_0 \ (10^{-17} \ { m m}^2)$	9.4	8.7

Fe Boltzmann Lidar Principle

$$N_{\rm Fe}(\lambda, z) = \left(\frac{P_{\rm L}\Delta t T_{\rm a}}{hc/\lambda}E(\lambda, z)\right)\sigma_{\rm eff}(\lambda, T, \sigma_{\rm L})R_{\rm B\lambda}\rho_{\rm Fe}(\lambda, z)$$

$$\times \Delta z \left(E(\lambda, z)T_{\rm a}\frac{A_{\rm R}}{4\pi z^2}\eta\right)$$
(5.92)

$$egin{aligned} N_{ ext{norm}}(\lambda,z) &= rac{N_{ ext{Fe}}(\lambda,z) + N_{ ext{B}}(\lambda,z) - \hat{N}_{ ext{B}}(\lambda)}{N_{ ext{R}}(\lambda,z_{ ext{R}}) + N_{ ext{B}}(\lambda,z_{ ext{R}}) - \hat{N}_{ ext{B}}(\lambda)} \ &= rac{z_{ ext{R}}^2 E^2(\lambda,z) R_{ ext{B}\lambda} \sigma_{ ext{eff}}(\lambda,T,\sigma_{ ext{L}})
ho_{ ext{Fe}}(\lambda,z)}{z^2 \sigma_{ ext{R}}(\lambda)
ho_{ ext{atmos}}(z_{ ext{R}})} \end{aligned}$$

Fe Boltzmann Lidar Principle

$$\begin{split} R_{\rm T}(z) = & \frac{N_{\rm norm}(\lambda_{374}, z)}{N_{\rm norm}(\lambda_{372}, z)} \\ = & \frac{g_2}{g_1} \frac{R_{\rm B374}}{R_{\rm B372}} \left(\frac{\lambda_{374}}{\lambda_{372}} \right)^{4.0117} \frac{E^2(\lambda_{374}, z)}{E^2(\lambda_{372}, z)} \\ & \times \frac{\sigma_{\rm eff}(\lambda_{374}, T, \sigma_{\rm L374})}{\sigma_{\rm eff}(\lambda_{372}, T, \sigma_{\rm L372})} \exp(-\Delta E/\!\!/k_{\rm B}T) \end{split}$$

$$egin{aligned} R_\sigma =& rac{\sigma_{ ext{eff}}(\lambda_{374},T,\sigma_{ ext{L}374})}{\sigma_{ ext{eff}}(\lambda_{372},T,\sigma_{ ext{L}372})} \ R_E(z) =& rac{E(\lambda_{374},z)}{E(\lambda_{372},z)} \end{aligned}$$

$$\begin{split} T(z) &= \frac{\Delta E/\!\!k_{\rm B}}{\ln \left[\!\frac{g_2}{g_1} \frac{R_{\rm B374}}{R_{\rm B372}} \left(\!\frac{\lambda_{374}}{\lambda_{372}}\!\right)^{4.0117} \frac{R_E^2(z) R_\sigma}{R_{\rm T}(z)}\right]} \\ &= \frac{598.44 K}{\ln \left[\!\frac{0.7221 R_E^2(z) R_\sigma}{R_{\rm T}(z)}\right]} \end{split}$$

Fe Boltzmann Lidar Calibration

Fe Boltzmann Lidar Instrumentation

Fe Boltzmann Lidar Transmitter

□ Based on injection-seeded, frequency-doubled, pulse Alexandrite laser systems (372 and 374 nm output)

Fe Lidar Seeder Laser System

Seeder Laser Structure and Wavelength Control

Fe Boltzmann Lidar @ South Pole

Fe Boltzmann Lidar @ Rothera

Fe Boltzmann Lidar Receiver

Fe Boltzmann Lidar Receiver

The Ionosphere and Thermosphere

The Aurorally-Modified Ionosphere

The Spectroscopy of Molecules vs. Atoms

Molecular spectroscopy has vibrational and rotational states.

HATEBANKS

N₂⁺ Boltzmann Temperature Lidar

Rotational State Resonance Lidar

A dual laser lidar system employing solid-state lasers could be used to profile two rotational states simultaneously and hence study the energy deposition in the auroral ionosphere.

Boltzmann technique utilizes Maxwell-Boltzmann distribution of atomic or molecular populations along different energy levels, which is directly temperature dependent.

□ The temperature-dependent population ratio is inferred through the intensity ratio of two resonance fluorescence lines whose lower energy levels are the two energy levels that we concern.

□ The key is to find the right energy level diagrams that are suitable to this measurement – energy separation is not too large or too small, and wavelengths fall in the laser reachable range.

□ Boltzmann technique can be applied to not only the Fe Boltzmann lidar but also potentially to other molecular species like N_2^+ .

Boltzmann technique is also used in rotational Raman lidar and in airglow temperature mappers, like Bomem.