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General Lidar Equation

Assumptions: independent and single scattering

Ng(A,R) =Ny (A1) [ B(A,AL,0,R)AR] % [T, RT(AR) | [n(A,A)G(R) |+ Ny

J Ng - expected photon counts detected at A and distance R;
 1st term - number of transmitted laser photons;

J 2nd term - probability that a transmitted photon is scattered
by the scatters into a unit solid angle at angle 6;

J 3rd term - probability that a scatter photon is collected by
the receiving telescope;

 4th term - light transmission during light propagation from
laser source to distance R and from distance R to receiver;

J 5th term - overall system efficiency;
J 6th term - background and detector noise.




More in General Lidar Equation
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N (R) - expected received photon number from a distance R
P_ - transmitted laser power, A - laser wavelength

At - integration time,

h - Planck’s constant, ¢ - light speed

B(R) - volume scatter coefficient at distance R for angle 6,
AR - thickness of the range bin

A - area of receiver,

T(R) - one way transmission of the light from laser source to
distance R or from distance R to the receiver,

n - system optical efficiency,
G(R) - geometrical factor of the system,
Ng - background and detector noise photon counts.




Solution for
Scattering Form Lidar Equation

] Scattering form lidar equation

Pp(AL)At

Nc¢(A,2) =
S( ) hC/)LL

[B(A.Ap,2)AZ]:

A

2
<

'[T()LL,Z)T()\.,Z)] -[n(A,AL)G(z)] +Np

J Solution for scattering form lidar equation
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Solution for
Fluorescence Form Lidar Equation

J Fluorescence form lidar equation
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J Solution for fluorescence form lidar equation
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Differential Absorption/Scattering Form

J For the laser with wavelength A, on the molecular
absorption line

NS()"on ’Z) = NL()"on)[/gsca()"on ’Z)M](%)exp[_zfoz&()“on 7Z,)dZ,
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 For the laser with wavelength A off the molecular
absorption line
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Differential Absorption/Scattering Form

J The ratio of photon counts from these two channels is a
function of the differential absorption and scattering:
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Solution for
Differental Absorption Lidar Equation

J Solution for differential absorption lidar equation
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Solution for
Resonance Fluorescence Lidar Equation

J Resonance fluorescence and Rayleigh lidar equations
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J Rayleigh normalization
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(] Solution for resonance fluorescence
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Solution for
Rayleigh and Mie Lidars
[ Rayleigh and Mie (middle atmos) lidar equations
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J Rayleigh normalization
Br(2) + Pueroso1(2) _ Ng(A,z)-Np , Z2 ,T2 ’ZR)G(\Z\R\)

Br(zR) - Ng(Azg)-Np 2R’ %)??&\L
J For Rayleigh scattering at z and z,

ﬁR(Z) _ GR(Z)natm(Z) _ natm(z)
Pr(zr) OR(ZR)Nam(ZR) Ny (ZR)




Solution (Continued)

J Solution for Mie scattering in middle atmosphere

Ng(A,2)-Np z* g (2)
Nr(Azr)=Np zp%  Nam(2R)

Baeroso1(2) = Pr(zRr)
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J Rayleigh normalization when aerosols not present

Pr(z) _ Ng(A,z)-Np | z” .T2 2r)GlzR)
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J Solution for relative number density in Rayleigh lidar

RND(7) = Natm (2) _ Pr(2) _ Ng(A,z)-Npg 72
nam(Zr)  Br(zr) Ng(Azg)-Np 7,°




Summary

J Solutions of lidar equation can be obtained by solving
the lidar equation directly if all the lidar parameters and
atmosphere conditions are well known.

J Solutions for three forms of lidar equations are shown:
scattering form, fluorescence form, and differential
absorption form.

J However, system parameters and atmosphere conditions
may vary frequently and are NOT well known to
experimenters.

J A good solution is to perform Rayleigh normalization to
cancel out most of the system and atmosphere parameters
so that the essential and known parts can be solved.



