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I. Introduction 
 “Fundamentals of Quantum Mechanics” has a threefold purpose: to explain the 
physical concepts of quantum mechanics, to describe the mathematical formalism of 
quantum mechanics, and to apply the ideas and methods of quantum mechanics to 
illustrative examples. The first QM note focused on the first purpose, and shed some light 
on the second purpose. The “Notation and Representation in QM” note focused on the 
second purpose. However, they did not touch the applications.  

Quantum mechanics (QM) can be applied to nearly every aspect of modern 
science and technology. To our laser remote sensing class, the main applications of QM 
lie in the following five aspects: 

-- Atomic structure and atomic spectra 
-- Laser spectroscopy 
-- Molecular structure and molecular spectra 
-- Scattering and collision theory 
-- Laser physics and device 

 The current note is aimed for the first two aspects of QM application as well as 
getting familiar with the mathematical formalism of QM. 
 
II. Brief Review of Fundamentals of Quantum Mechanics 
 Before going in further, let us briefly review what we have learned from the 
previous note. In quantum mechanics, a state of a system is described by an abstract state 
vector or a concrete wave function, an observable or measurable physical quantity is 
represented by an operator, and the time evolution of the state is determined by the 
Schrödinger equation that is the fundamental equation of motion in quantum mechanics. 
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Any arbitrary state of a system can be expressed in a superposition of a complete set of 
orthonormal eigenstates. The only possible results of the measurement of a physical 
observable are one of the eigenvalues. The probability of measurement result occurring in 
one particular eigenvalue is proportional to the square of the magnitude of the coefficient 
of this eigenstate in the expansion of the arbitrary state. Uncertainty principle is a 
fundamental feature in quantum mechanics, and applies to several pairs of physical 
quantities, e.g., the coordinates and momentum of a particle, or the measurement time 
length and energy of a particle, cannot be determined to infinite accuracy simultaneously, 
but possess an indeterminacy to the degree of Planck constant. 
 
III. Eigenvalue Equation versus Schrödinger Equation 
 The Schrödinger equation is the fundamental equation governing the evolution of 
the state of a system. A general format of the Schrödinger equation is 
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The Schrödinger equation can be considerably simplified when the potential energy V(r) 
does not depend on the time. It is then possible to express its general solution as a sum of 
product of functions of r and t separately. In other words, a particular solution of Eq. (1) 
can be written as a product: 
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sum of such separated solutions. Substituting the particular solution into Eq. (1), we 
obtain 
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Since the left side of Eq. (2) depends only on t and the right side only on r, both sides 
must be equal to the same separation constant, which we call E. Then the left side of the 
equation for f is readily integrated to give 
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where C is an arbitrary constant. The right side of the equation for u becomes 
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Since Eq. (4) is homogeneous in u, the constant C may be chosen to normalize u. Thus, a 
particular solution of the Schrödinger equation can be written as 
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 Recall the time-derivative operator for the total energy:   
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E" ih(# /#t) , it may be 
applied to the state given by Eq. (5) to give 
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An equation of the type of Eq. (6) is called an eigenvalue equation, and ψ is said to be an 
eigenfunction of the operator that appears on the left, and the constant E that appears on 
the right is called the corresponding eigenvalue. 
 Eq. (4) is also an eigenvalue equation. It states that u (and hence also ψ) is an 
eigenfunction of the operator   
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course, to be expected that ψ is an eigenfunction of this operator if it is an eigenfunction 
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of the time-derivative operator   

! 

ih(" /"t)since the two operators are equivalent not only for 
separated functions of the form of Eq. (5) but also for more general solutions. 
 It is worth to point out that Eqs. (4) and (6) are usually called “time-independent 
Schrödinger equation”. A misunderstanding in QM field is that eigenvalue equations are 
thought to be a special case of the Schrödinger equation. Time-independent Schrödinger 
equation is only one of kinds of the eigenvalue equation, i.e., the eigenvalue equation of 
energy. There exist many other eigenvalue equations, such as the eigenvalue equation for 
angular momentum, etc. A general expression of an eigenvalue equation is 
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ˆ A " = A" , (7) 
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ˆ A  is the operator of a physical quantity (observable), A is the eigenvalue of this 
quantity, and 

! 

"  is the eigenstate of this operator. When the operator is the Hamiltonian 
operator, the eigenvalue equation is for the total energy: 
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When the operator is the angular momentum, the eigenvalue equation is for the angular 
momentum:  
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IV. Stationary States 
 According to the uncertainty relation, a precise measurement of the total energy 
of a particle cannot be made in a finite length of time. Thus, if the total energy is to have 
a definite value, it is essential that the potential energy V(r) be independent of the time. 
Then the operator   
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ih(" /"t) , has eigenfunctions u(r) that need not involve the time. Therefore, the energy-
eigenvalue equation can be written as 
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where uE(r) is the eigenfunction corresponding to the eigenvalue E. 
 An energy eigenfunction, like the one given by Eq. (5) or the one in Eq. (10), is 
said to represent a stationary state of the particle, since |ψ|2 and | uE(r)|2 are constant in 
time. The possible eigenvalues of energy depend on detailed situation under 
consideration. In general, bound states have discrete eigenvalues of energy, while non-
bound states (like scattering or collision) have continuous eigenvalue of energy. 
 The quantum theory of atomic structure discuss below is to derive the discrete 
stationary states of a bound system – an atom as a whole of nucleus and electrons. 
 
V. Atomic Structure 
 Atomic structure theory cares about the stationary states of an atom. These 
stationary states will be achieved by solving the eigenvalue equations of energy and 
angular momentum under various interactions. Our approach is to consider the 
interactions within an atom from the major force (like Coulomb force between the 
nucleus and electrons) to the minor force (like nuclear spin) and the interactions between 
an atom and external fields (static electric and magnetic fields), and describe how the 
energy levels of an atom are formed, split, and shifted under these interactions. 
 
1. Coulomb Force in Hydrogen Atom 
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 Hydrogen atom is the simplest atom in the world. We will use it to show how QM 
works in deriving the energy levels of an atom. The Schrödinger equation given above 
describes the motion of a single particle in an external field of force. Now we are 
interested in the motion of two particles (nucleus and electron) that are attracted to each 
other by a Coulomb force that depends only on the distance between them. The form of 
the Schrödinger equation to be used for two particles is suggested by the extension from 
three to six rectangular coordinates, leading to the following equation: 
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where m1 and m2 represent the masses of two particles. If now the potential energy 
depends only on the relative coordinates, so that 

! 

V =V (x1 " x2,y1 " y2,z1 " z2) , an 
important simplification can be made. We define relative coordinates x, y, z and 
coordinates of the center of mass X, Y, Z by 

 

! 

x = x1 " x2 y = y1 " y2 z = z1 " z2

X = (m1x1 +m2x2) /M Y = (m1y1 +m2y2) /M Z = (m1z1 +m2z2) /M
 (12) 

where M = m1 + m2 is the total mass of the system. Thus, Eq. (11) can be rewritten in 
terms of the new coordinates 
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where 
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is called the reduced mass. 
 Two separation of Eq. (13) can now be made. First, the time dependence can be 
separated out as shown in Section III. Second, a separation can be made into a product of 
functions of the relative coordinates and center-of-mass coordinates. The results are 

 

  

! 

"(x,y,z,X,Y ,Z,t) = u(x,y,z)U(X,Y ,Z)e
#i(E+ $ E )t / h

#
h

2µ
%2

u +Vu = Eu

#
h

2M
%2

U = $ E U

 (15) 

where ∇2 operators in the 2nd and 3rd equations imply differentiation with respect to the 
relative and center-of-mass coordinates, respectively. The second of Eqs. (15) describes 
the relative motion of the two particles and is the same as the equation for the motion of a 
single particle that has the reduced mass µ in an external potential energy V. The third of 
Eqs. (15) tells us that the center of mass of the two-particle system moves like a free 
particle of mass M. 
 In the hydrogen atom, we shall be interested in the energy levels E associated 
with the relative motion. In this case, the reduced mass µ is only slightly smaller than the 
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electron mass, since atomic nuclei are far more massive than electrons. The Coulomb 
force between the nucleus and the electron and the Coulomb potential are given by 

 

! 

F(r) = "
1

4#$0

Ze
2

r
2

 and 

! 

V (r) = "
1

4#$0

Ze
2

r
 (16) 

The boundary conditions implied by Eq. (16) are 
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The eigenfunction and eigenvalue of the relative motion of the hydrogen atom can be 
obtained by solving the following eigenvalue equation at the boundary conditions given 
by Eq. (17): 
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The consequence of these boundary conditions is that physically meaningful solutions of 
the Schrödinger equation are not obtainable at any energy E, but only at specific 
quantized eigen-energies: 
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where n is permitted at the integer numbers of 1, 2, 3, …. 
 We will not go in details to explain how to solve the eigenvalue equation to obtain 
the eigenfunction, which can be found in any of the reference books. The eigenfunction 
of Eq. (18) can be written as a product of a radial function Rnl(r) and an angular function 
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The radial function is labeled by two quantum numbers n and l, and the angular function 
is a spherical harmonic function labeled by two quantum numbers l and ml. Each 
eigenfunction, defined by the set of quantum numbers n, l, and ml, must have an 
associated eigen-energy as defined by Eq. (19). Note, however, Eq. (19) only depends on 
the quantum number n. There is, for all values of n except n = 1, more than one total 
eigenfunction corresponding to each energy level. This phenomenon is crucially 
important in spectroscopy and QM and is known as degeneracy. The key point here is 
that the electron can exist in more than on physically distinct state in the atom without 
changing its total energy. 
 The quantum number n is called the principal quantum number and it determines 
the energy level: 
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where R is the collection of constants known as the Rydberg constant 
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The quantum number l is called the orbital angular momentum quantum number, 
which is directly related to the magnitude of the orbital angular momentum of the 
electron: 
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Classically the angular momentum of a particle is defined by the equation: 
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where r is the position vector and p is the linear momentum vector. In quantum 
mechanics, we obtain operators for the square of the angular momentum as 
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where the operator for the component is given by 
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The orbital angular momentum quantum number l is permitted to take integral values 
from 0 to n-1, i.e.,  
 l = 0, 1, 2, …, n-1. (27) 
States with l = 0, 1, 2, 3, 4, 5 … are labeled for historical reasons as s, p, d, f, g, h, … 
respectively and the notation 1s, 2p, 3d, etc is used for the orbitals, with the first number 
being the principal quantum number and the letter being the angular momentum quantum 
number. 
 The quantum number ml is called the magnetic quantum number. It characterizes 
the z-component of the orbital angular momentum vector lz: 
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lz = mlh (28) 
For every permitted value of l, there are 2l+1 independent wavefunctions with the 
magnetic quantum numbers ml = -l, -l+1, …, +l. Again, these are degenerate states. 
 Without considering relativity correction (mass change due to the velocity) and 
the electron spin, the hydrogen atom energy levels are highly degenerated. For each 
principal quantum number n, the degeneracy is given by  
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 The wavefunctions for the atom are generally referred to as orbitals. This word 
represents an extension of the old ideas of quantum theory (Bohr theory) in which 
electrons moved in well-defined elliptical orbits around the nucleus. In the modern 
quantum theory, the orbital trajectory is not precisely specified. The true meaning of the 
orbitals is seen through the probabilistic interpretation of the wavefunctions. Recall what 
we explained in the two QM notes: the square of the wavefunction 
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r )  gives the 

probability density for the electron at a particular position in space. In the case of an 
atom, the wavefunction 
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r 
r )  represents the probability distribution of the electron 

position relative to the nucleus. So the orbitals corresponding to different quantum 
number l give the probability distribution of how the electron moves around the nucleus. 
 
2. Central-Field Approximation 
 The starting-point of calculations on all except the lightest atoms (hydrogen) is 
the central-field approximation. This assumes that each of the atomic electrons moves in 
a spherically symmetric potential energy V(r) that is produced by the nucleus and all the 
other electrons. The approximation is a good one if the deviation from the V(r) for one 
electron produced by close passage of other electrons is relatively small. This is actually 
the case, since the constant nuclear potential is of the order of Z times as large as the 
fluctuating potential due to each nearby electron, and the latter varies quite slowly 
(inversely) with the separation distance. The two principal problems are then the 
calculation of the central field and the correction of the approximate results obtained 
from it. 
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 The energy levels of many-electron atoms will have a much more complicated 
structure compared to hydrogen, because the quantized energies are now determined not 
only by nucleus-electron Coulomb attraction, but also by the mutual repulsion between 
the electrons. An energy level for the many-electron case represents the total energy of all 
N electrons when the atom is in a particular quantum state. In quantum mechanics the 
wavefunctions and energy levels are obtained by solving the Schrödinger equation, which 
for a many-electron atom can be written down in the following form: 
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The first term in square bracket is the sum of kinetic energy operators for each electron, 
and the second is the sum of potential energies of nucleus-electron attraction.Whereas 
both these terms are present for a one-electron atom, the new term (i.e., the third) that 
must be added is the electron-electron repulsive potential energy, Vij summed over all 
pairs of electrons (i ≠ j): 
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Unfortunately, the consequence of this third term is that the equation can no longer be 
solved exactly. Even for the helium atom with only two electrons, we have a so-called 
“three-body problem” for which even in classical mechanics there is no analytical 
solution to the equations of motion of the three interacting particles. 
 The central-field approximation enables us to gain approximate analytical 
knowledge of these many-electron atoms while the corrections help us to get close to the 
truth. First, it is assumed that the total wavefunction describing the positions and 
momenta of all the electrons can be written as a product of one-electron wavefunctions, 
each of which describes the position and momentum of just one electron. It is then 
proposed that each one-electron wavefunction is similar to the eigenfunction (orbitals) we 
have already described for the hydrogen atom, and is characterized by the same set of 
quantum numbers. Within the central-field approximation, each electron moves within 
the time-averaged charge distribution due to all the other electrons, and the one-electron 
wavefunctions are obtained by solving a one-electron Schrödinger equation with the 
potential energy in a form that accounts for the average interactions with all other 
electrons: 
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The double bar on the electron-electron repulsion operator indicates two averaging 
processes: an average over all angles so that the angle-dependent potential energy is 
replaced by a spherically symmetric one, and also the average over all positions of the 
other electrons. The only variables in the equation are now the coordinates of electron i 
and the equation is solvable by numerical integration methods.  
 The complication is that in order to obtain the wavefunction for one electron we 
need to know the wavefunctions for all the other electrons, so that the average electron-
electron repulsion potential can be calculated. These, however, can only be determined 
by the same procedure that requires a predetermination of the wavefunction for the first 
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electron. Catch 22? A useful procedure to solve this problem is the self-consistent field 
(SCF) method, in which an initial guess is made for the wave functions of the N-1 
electrons, and the Schrödinger equation solved for the Nth electron. This wavefunction is 
then used as an improved guess for that electron in the calculation of the wavefunction 
for another electron. The procedure continues iteratively, improving each wavefunction a 
succession of times until further iterations lead to no further change of the wavefunctions. 
The total wavefunction is then self-consistent and is assumed to be the best solution. The 
orbital energy is defined as the SCF one-electron energy calculated as described above. 
The total energy of all electrons is not exactly equal to the sum of orbital energies 
because that includes the repulsion between each pair of electrons twice over. Therefore, 
the total energy is actually given by 
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where the εI are the orbital energies for each electron and Vee is the expectation value of 
the total electron-electron repulsion energy. 
 
3. Pauli Exclusion Principle and Correction to Central-Field Approximation 
 The electron configuration is the description of which orbitals are occupied by all 
the electrons in the atom. If electrons were completely independent and the lowest energy 
state is available to each electron, then the expected Na atom ground state would be 1s11. 
This is not the case because electrons in atoms are found to obey the Pauli exclusion 
principle, which states that no two electrons in an atom can have the same set of four 
quantum numbers n, l, ml, and ms. Thus, the 1s orbital has quantum numbers n=1, l=0, 
and ml=0, and there are two possible values for ms (±1/2); therefore, two electrons can 
exist in this orbital in one atom, one with ms=+1/2, and another with ms=-1/2. Similarly, 
we can derive the maximum possible electron numbers in each state. The principle is to 
fill in the lowest state and then move onto the next lowest state, until all electrons are 
filled in. For sodium the ground state electron configuration is 1s22s22p63s. 
 For an atom with many electrons, like the Na, correction needs to be made to the 
central-field approximation. There are mainly two effects: shielding and penetration. Let 
us use the Na as an example to explain them. The first 10 electrons of the Na atom act 
like a potential shielding for the 11th electron outside the shell formed by the first 10 
electrons. The 11th electron experiences an attractive force due to the positive nuclear of 
charge of +11, and the repulsive force due to an effective point charge of -11 arising from 
the first 10 electrons. Thus, the net result is that the 11th electron experiences an overall 
effective nuclear charge of Zeff = +1. We say that the electron is shielded from the nuclear 
charge by the inner electrons and the binding energy of this electron (i.e., the energy 
required to remove it from that orbital to infinity) is almost identical to the binding 
energy of an electron in the same orbital in the hydrogen atom. 
 Consider next the configuration 1s22s22p63s and 1s22s22p63p. Although in both 
cases the n = 3 electron spends most of its time outside the core electron distribution, 
there is a certain probability of the electron penetrating inside the core. This probability is 
substantially greater for the 2s compared to the 2p orbital. This will cause the states with 
the same n but different l numbers to be non-degenerate, i.e., these states will have 
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different energy levels. This explains the split of energy levels in the course diagram of 
the Na energy levels. 

 
 
4. Magnetic Interaction of Electron – Fine Structure 
 Besides the static electric interactions between the nucleus and the electron, and 
the static electric interactions between electrons considered above, there are also 
magnetic interactions due to the spin of electrons. Such interactions have two types: the 
electron orbital motion interacts with the electron own spin motion, and the magnetic 
interaction between different electrons. The latter one is too complicated, and we will 
restrict our discussion only to the electron spin-orbital interaction in this class. 
 Electrons and many other types of elementary particle can be considered to posses 
an intrinsic angular momentum: the charged particle spins about its own axis and the 
property is known as spin. The magnitude of the spin angular momentum of an electron, 
represented by the vector   
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orbital angular momentum, we define a spin quantum number s = ½ such that  
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s is a unusual quantum number that can only take one value (1/2). Just as the orbital 
angular momentum has quantized z-components, the projection of the spin angular 
momentum sz is restricted to having values of  
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and the quantum number ms is defined to have values of ±1/2 such that 
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 The intrinsic spin of an electron leads to this particle acting like a tiny bar magnet, 
with magnetic moment given by 
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gs is the electronic g-factor – a constant that has been accurately measured to the value of 
2.002319314, and 
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µ
B
 is the Bohr magneton. 

 The orbital angular momentum possessed by an electron with l > 0 leads to a 
second source of magnetism. The circulating charged particle is an electric current and 
produces at the center of the orbit a magnetic moment given by 
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Just as two bar magnets repel or attract one another according to their relative orientation, 
the orbital and spin magnetic moments can be lined up in an attractive or repulsive 
orientation, that is energetically favorable or unfavorable, respectively. 

It is convenient to define a total angular momentum vector as 
the vector sum of the orbital vector and the spin vector: 
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Quantum mechanically, the vector   
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the same commutation properties as those representing l2 and lz. 
The magnitude of   
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where j is the total angular momentum quantum number, 
analogous to l. j is restricted to have values of 

j = l + s, l + s - 1, …, |l – s |. 
 
The formation of the total angular momentum results in the fine 
structure of atomic energy levels, as shown in the Na diagram. 

 
 
5. Influences of Nucleus - Hyperfine Structure and Isotope Shift 
 The nucleus also possesses an intrinsic spin angular momentum given by 
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 The nuclear spin angular momentum interacts with the electron total angular 
momentum. So it is convenient to define a new total angular momentum: 
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The magnitude of   
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where F is the new total angular momentum quantum number given by 
F = J + I, J + I – 1, …, |J – I| 

 The magnetic interaction between the nucleus and the electrons results in the 
hyperfine structure of atomic energy levels, as shown in the Na diagram. 
  
 Isotope shift: by mass shift and by field shift 
 
6. Influence of external static electric and magnetic field – Stark and 
Zeeman Effects 
 The external static field can further cause the energy level to split and shift. 
 
VI. Atomic Transitions 
 If a physical system is set up in a certain stationary state, it will remain in that 
stationary state so long as it is not acted upon by outside forces. Any atomic system in 
practice, however, frequently gets acted upon by external electromagnetic fields, under 
whose influence it is liable to cease to be in one stationary state and to make a transition 
to another. 
 
 The transition problem can be solved by using the time-dependent perturbation 
theory. We will not talk about the details. The results of the transitions are the absorption 
or emission of photons at specific frequency (wavelength) determined by the energy 
levels of the stationary states: 

! 

h" = E
2
#E

1
. 

 
 A result of this theory is that to a high degree of accuracy, transitions between tow 
states cannot occur under of influence of EM radiation if the matrix element of the 
operator with two stationary states is zero. It happens for many atomic systems that the 
great majority of the matrix elements do vanish. Therefore, there are severe limitations on 
the possibilities for transitions. These rules are called selection rules. 
 
 Spontaneous emission can only be explained by the quantization of the radiation 
field,  

  

! 

E = (n" +1/2)h"

"

# . 

It is caused by the “zero-field” energy. 
 
VII. Laser Spectroscopy 
 




