Middle Atmosphere Wind and Temperature Lidars: Current Capabilities and Future Challenges

Light Detection and Ranging (LIDAR)

Resonant Fluorescence From Metal Atoms

Rayleigh Scattering From Air Molecules

Mie Scattering From Aerosols

This photon count profile illustrates the rich variety of atmospheric constituents and processes that can be studied with lidar systems

Historical Perspective

•First lidar systems constructed in 1930s and 40s using mechanically modulated searchlights to study clouds, aerosols, and stratospheric temperatures [*Elterman, J. Geophys. Res., 1951a,b; 1953*]

•In 1980s M. L. Chanin and colleagues used frequency-doubled Nd:YAG lasers to measure stratospheric temperatures and winds (Rayleigh scattering) [*Chanin and Hauchecorne, J. Geophys. Res., 1981; Chanin et al., GRL, 1989*]

•First lidar in space (aerosołRayleigh) flew aboard the shuttle Discovery in September 1994 and provided global measurements of tropospheric/stratospheric clouds, aerosols, and temperatures [*McCormick et al., Bul. Am. Met. Soc., 1993*]

•Today powerful UV laser-based Rayleigh lidars can measure winds in the stratosphere to ~50 km and temperatures to altitudes in excess of 85 km

•First resonance fluorescence lidar measurements were conducted in late 1960s when Bowman et al. [*Nature, 1969*] reported measurements of mesospheric Na profiles using a tunable dye laser; since then Fe, K, Ca, Ca⁺, and Li have also been measured

• A crude Na temperature lidar was first demonstrated in late 1970s [Gibson et al., Nature, 1979]

•Today Na, K, and Fe lidars are used routinely to measure mesopause region (80~105 km) temperatures while several Na systems are also capable of measuring wind velocities

•Spectra of isolated fluorescence lines and Rayleigh scattered light are approximately Gaussian •Width is related to temperature (Thermal Broadening) •Center frequency is related to velocity (Doppler Shift)

Signal Processing

Temperature and Winds can be measured by:

- 1) Measuring full spectrum of backscattered signal
- 2) Scanning laser through full fluorescence spectrum and measuring backscattered signal at each frequency
- **3) Probing fluorescence spectrum with laser at 3-frequencies and measuring backscattered signal at each frequency**

4) Measuring spectrum of backscattered signal at 3-frequencies

Theoretical Optimum Ideal Receiver

No background noise (Nighttime)

Receiver measures precise frequency of each detected photon (Infinite Spectral Resolution Receiver)

Detected photon frequency is Gaussian distributed random variable

$$p(f_i) = \exp\left[-(f_i - f_S + f_D)^2 / 2\sigma_S^2\right] / \sqrt{2\pi}\sigma_S$$

Mean frequency = $f_s - f_D$ Frequency variance = σ_s^2

Minimum-mean-square-error estimators of velocity and temperature are related to sample mean frequency and sample frequency variance

$$\hat{V}_{R} = -\frac{\lambda_{S}}{N_{S}} \sum_{i=1}^{N_{S}} (f_{i} - f_{S}) \qquad \Delta \hat{V}_{R} = \frac{\lambda_{S} \sigma_{S}}{\sqrt{N_{S}}} = \frac{\lambda_{S} \sigma_{S}}{\sqrt{SNR}}$$

$$\hat{T} = \frac{\lambda_{S}^{2} m_{S}}{k_{B} N_{S}} \sum_{i=1}^{N_{S}} (f_{i} - f_{S} + \hat{V}_{R} / \lambda_{S})^{2} \qquad \Delta \hat{T} = \frac{\sqrt{2T}}{\sqrt{N_{S}}} = \frac{\sqrt{2T}}{\sqrt{SNR}}$$
[Gardner, Applied Optics, 2004] $SNR = N_{S}$ @ Night

Frequency Scanning Lidar

Laser is scanned over full fluorescence spectrum with same dwell time at each frequency Receiver records photon counts versus laser frequency Model spectrum is fitted to photon count data to determine T

$$\Delta \hat{T} = \left[\sqrt{\frac{2}{\pi}} \alpha_{scan} \right]^{1/2} \frac{T}{\sqrt{SNR}} @ night \qquad \Delta \hat{T} = \left[\frac{2}{\pi} \alpha_{scan}^2 \left(1 - \frac{\alpha_{scan}^2}{6} + \frac{\alpha_{scan}^4}{80} \right) \right]^{1/2} \frac{T}{\sqrt{SNR}} @ day$$
$$\alpha_{scan} = \frac{\Delta f_{scan}}{\sigma_s} \approx 6 \qquad SNR = \frac{N_s^2}{N_s + N_B} \qquad [Gardner, Applied Optics, 2004]$$

Optimized 3-Frequency Lidar

Laser probes fluorescence line at three frequencies (f_s and $f_s \pm \Delta f$) Dwell time at each frequency and $\Delta f \sim 600$ MHz are both chosen to minimize error Optimization different for temperature and wind and for day and night observations

$$\Delta \hat{T} = G_{3-freq}(\alpha,\beta) \frac{T}{\sqrt{SNR}} \qquad G_{3-freq}(\alpha,\beta) = \frac{2}{\alpha} \left(1 + e^{\alpha/4} \sqrt{\frac{e^{\alpha/2} + \beta}{1+\beta}} \right)$$
$$\alpha = \frac{\Delta f^2}{\sigma_s^2} \qquad \beta = \frac{N_s}{N_B} \qquad [Gardner, Applied Optics, 2004]$$

Fe Boltzmann Lidar

Ground state population of Fe responsible for 374 nm line determined by Boltzmann distribution Temperature is derived from ratio of Fe densities measured at 372 nm and 374 nm using 2 lidars

$$\hat{T} = \frac{\Delta E / k_B}{\ln \left[\frac{7}{9} \frac{\rho_{Fe}(372nm)}{\rho_{Fe}(374nm)} \right]}$$
[Chu et al., Applied Optics, 2002]
$$\Delta \hat{T} = G_{Boltzmann}(T, SNR_{372nm} / SNR_{374nm}) \frac{T}{\sqrt{SNR_{372nm}}}$$
$$G_{Boltzmann}(T, SNR_{372nm} / SNR_{374nm}) = \frac{T}{598.44K} \sqrt{1 + \frac{SNR_{372nm}}{SNR_{374nm}}}$$

Rayleigh Lidar

When atmosphere is in hydrostatic equilibrium temperature is derived from relative atmospheric density profile and temperature estimate at top of profile

$$\hat{T}(z) = \frac{T(z_0)\rho_A(z_0)}{\rho_A(z)} + \frac{M}{R} \int_{z}^{z_0} \frac{g(r)\rho_A(r)}{\rho_A(z)} dr$$
$$\Delta \hat{T} = \frac{T}{\sqrt{SNR}} \quad [Gardner, Applied Optics, 2004]$$

To achieve ± 1 K accuracy with optimized 3-frequency lidar requires SNR~ 1.3 x 10⁵ = 51 dB @ Night and SNR~ 5.2 x 10⁵ = 57 dB @ Day

Signal Processing Gain Factors for Temperature Lidars					
	Technique	Day	Night		
	Ideal Receiver				
	$\Delta \hat{T} = \sqrt{2T} / \sqrt{SNR}$	na	+2.1 dB		
	Optimized 3-Frequency	<mark>0 dB</mark>	<mark>0 dB</mark>		
	Frequency Scanning	-13.0 dB	-1.7 dB		
	Fe Boltzmann	-8.8 dB	-0.3 dB		
	Rayleigh	+11.1 dB	+5.1 dB		

Fe lidar has smallest error because Fe is heaviest atom and wavelength is shortest Optimized 3-frequency Fe lidar performs within 3.3 dB of Theoretical Min @ night To achieve ±1 m/s accuracy with optimized 3-frequency Fe lidar requires SNR~ 6.4 x 10⁴ = 48 dB @ Night and SNR~ 1.3 x 10⁵ = 51 dB @ Day

Hyperfine Lines and Isotopes

Naturally Occurring Isotopes of Na, K, Fe, and Ca (http://www.webelements.com/webelements/)

Isotope	Natural Abundance	Nuclear Spin	Magnetic Moment
	(Atom%)	(I)	(m/m _N)
²³ Na	100	3/2	2.217520
5410	5 05	٥	0
Fe	5.85	0	U
°'Fe	91.75	0	0
⁵⁷ Fe	2.12	1/2	0.09062294
⁵⁸ Fe	0.28	0	0
³⁹ K	93.26	3/2	0.3914658
⁴⁰ K	0.012	4	-1.298099
⁴¹ K	6.73	3/2	0.2148699
⁴⁰ Ca	96.94	0	0
⁴² Ca	0.65	0	0
⁴³ Ca	0.14	7/2	-1.31727
⁴⁴ Ca	2.09	0	0
⁴⁶ Ca	0.004	0	0
⁴⁸ Ca	0.19	0	0

System Architecture

Receiving

3-Frequency Fe/Rayleigh Temperature Lidar 🕴

Na systems employ dye ring-laser for local oscillator and pulsed dye amplifier

Maui:MALT Na Lidar Haleakala, HI

Laser Power 1-2 W @ 50 pps $\Delta f = 630 \text{ MHz}$ Telescope Diameter 3.7 m Power Aperture Product ~15 Wm²

Lidar Equation

$$SNR_{Night} = \frac{N_{S}^{2}(z)}{N_{S}(z) + N_{B}} \cong N_{S}(z) \qquad SNR_{Day} = \frac{N_{S}^{2}(z)}{N_{S}(z) + N_{B}} \cong \frac{N_{S}^{2}(z)}{N_{B}} \cong \frac{SNR_{Night}^{2}}{N_{B}}$$
$$N_{S}(z) \propto (PA\Delta z\Delta t)[T_{A}^{2}\sigma_{B}\rho_{S}(z)] \qquad N_{B} \propto S_{Sky}(\lambda)\Delta\lambda\Omega_{Field-of-View}$$

Backscatter Cross-Section

Species	$\begin{array}{c} Central \\ Wavelength \\ \lambda_{S} \ (nm) \end{array}$	$\begin{array}{c} Peak\\ Cross-Section\\ \sigma_{B}~(10^{-12}~cm^{2}) \end{array}$	Peak Density ρ _s (cm ⁻³)	Altitude (km)	$\sigma_{B}\rho_{S} (10^{-8}m^{-1})$
Na (D ₂)	588.995	14.87	3500	91.5	520
Fe	371.994	0.944	9000	88.3	85
K (D ₁)	769.896	13.42	40	91.0	5.4
Ca	422.673	38.48	40	90.5	15
Ca ⁺	393.366	13.94	80	95.0	11
<mark>Rayleigh</mark>	<mark>532.070</mark>	<mark>7.6 x 10⁻¹⁵</mark>	<mark>1.7 x 10¹⁴</mark>	<mark>85.0</mark>	<mark>0.013</mark>
Rayleigh	532.070	7.6 x 10 ⁻¹⁵	3.4 x 10 ¹⁵	65.0	0.26
Rayleigh	532.070	7.6 x 10 ⁻¹⁵	4.1 x 10 ¹⁶	45.0	3.1

Backscatter Parameters

$$\sigma_{Rayleigh}\rho_{Atmosphere}(z) = 3.7x10^{-31} \frac{P(mb)}{T(K)} \frac{1}{\lambda(m)^{4.0117}}$$
$$N_{S}(z) \propto (PA\Delta z\Delta t)[T_{A}^{2}\sigma_{B}\rho_{S}(z)]$$

Atmospheric Transmittance

Atmospheric attenuation decreases with increasing altitude

Sky Brightness and Background Noise

$$N_B \propto S_{Sky}(\lambda) \Delta \lambda \Omega_{Field-of-View}$$

Sky brightness decreases with increasing altitude

Atmospheric Parameters

		2-Way	Sky Spectral	Fraunhofer Line	Fraunhofer	Narrowband
Species or	λ _s (nm)	Atmospheric	Radiance	Relative Depth ²	Linewidth ³	Sky Spectral
Laser		Transmittance	Continuum ¹	(% Continuum)	(GHz)	Radiance ^{1,4}
		T_A^2	(10 ⁻³ W/m ² /nm/sr)			(10 ⁻³ W/m ² /nm/sr)
Na	588.995	0.49	86.3	9.6	14.5	8.28
Fe	371.994	0.25	34.8	8.1	36.0	2.82
K	769.896	0.64	67.7	21.7	5.9	14.69
Ca	422.673	0.37	67.7	7.6	23.2	5.15
Ca ⁺	393.366	0.30	41.0	9.9	554.0	4.06
Frequency						
Doubled	532.070	0.46	90.0	na	na	90.0
Nd:YAG						
Frequency						
Tripled	354.713	0.23	27.9	na	na	27.9
Nd:YAG						

¹Zenith viewing at sea level, solar zenith angle 45⁰, excellent visibility

²Includes 5% Ring effect for all lines, ³Full width @ twice depth

⁴Receiver bandwidth much smaller than Fraunhofer linewidth

Relative I	Nighttime	Signal-to-Noise	Ratios
Species or Laser	Wavelength	Fluorescence	Rayleigh
	(nm)	SNR _S /SNR _{Na}	SNR_{λ}/SNR_{532}
Na Na	<mark>588.995</mark>	<mark>0 dB</mark>	-1.1 dB
Fe	371.994	-12.5 dB	+2.0 dB
K	769.896	-17.6 dB	-3.4 dB
Ca	422.673	-19.1 dB	+2.1 dB
Ca ⁺	393.366	-21.9 dB	+2.1 dB
Frequency-Doubled Nd:YAG	<mark>532.070</mark>	na	<mark>0 dB</mark>
Frequency-Tripled Nd:YAG	354.713	na	+2.3 dB

Relative Daytime Signal-to-Noise Ratios

Species or Laser	Wavelength (nm)	Fluorescence SNR _S /SNR _{Na}	Rayleigh SNR _λ /SNR ₅₃₂
Na	<mark>588.995</mark>	<mark>0 dB</mark>	+7.8 dB
Fe	371.994	-18.4 dB	+20.7 db
K	769.896	-38.8 dB	-0.5 dB
Ca	422.673	-34.8 dB	+17.6 dB
Ca ⁺	393.366	-39.0 dB	+19.0 dB
Frequency-Doubled Nd:YAG	<mark>532.070</mark>	na	<mark>0 dB</mark>
Frequency-Tripled Nd:YAG	354.713	na	+11.5 dB

Error $\propto 2^{-ratio(dB)/6}$

Maui:MALT Na Lidar @ Haleakala, HI

Balloon (0-28 km), Rayleigh Lidar (28-58 km), Na Lidar (80-105 km) Temperature Observations @ Syowa, Antarctica

Kawahara et al. [JGR, in press 2004]

Lidars are also being used to study Meteor Trails and Polar Mesospheric Clouds

Future Challenges (Mobile/Global Capabilities)

Future Challenges (Thermospheric Capabilities)

•Helium Fluorescence Lidar @ 587.56 nm (R. Kerr)

•Aurorally-Excited Nitrogen Lidars @ 888.3, 391.2, and 337.0 nm [R. Collins et al., *Applied Optics*, 1997]

•Topside O Fluorescence Lidar @ 130.4 and 135.6 nm (G. Swenson et al.)

Future Challenges (Novel Techniques)

Hundred Watt fiber lasers and several meter diameter Fresnel lens telescopes Measure pressure gradients from which geostrophic winds are computed (Swenson, Liu, and Dragic)

Conclusions

•Lidars are making crucial contributions to MLT science

•Technology exists to extend observations into daytime and wind measurements into lower mesosphere (Rayleigh)

•Technology also exists to obtain global temperature measurements throughout MLT (Fe/Rayleigh + HIAPER)

•New techniques and technologies are needed to extend observations into thermosphere