Lecture 19. Temperature Lidar (3)
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Review of Doppler & Boltzmann

 Doppler effect and Boltzmann distribution are two effects that are
directly temperature-dependent. The Doppler technique and Boltzmann
technique are "straight-forward” in the sense of deriving temperature
or wind. However, the lidar architecture is usually complicated and
sophisticated, due to the high demands on frequency accuracy, linewidth,
and power combination.
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Doppler Ratio Technique

J From physics, the ratios of R; and R,, are given by

R. = NNorm (f+’Z) + NNorm (f_,Z) _ Geﬁ(f+7z) + Geﬁ(f_,Z)
T = =

NNorm(fa’Z) Geﬁf(fa,Z)

R. = NNorm(f—vz) _ Geﬁ‘(f_,Z)
w = =

NNorm(f+’Z) Geﬁ‘(f.,.,Z)

J Compute Doppler calibration curves from physics
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Doppler Ratio Technique

J From actual photon counts, we have the ratios calculated:

R, = N yorm S e52) + Nyorn (f-52)
N yorm (fa:2)
(Nsm,z)—NB 2 1 nR<z))+ Ny(f.2)-Ny 22 1 nR<z>)
\WNg(fozr) =Ny 2° EX(f,,2) ng(zp)) \Ns(fozg)=Np zp° E*(f,2)  ng(zg)
B Ns(fp)=Np 22 1 m(@
Ns(faszr) =Np 23" E*(fp2)  ng(2g)
No(f2)-Ng 22 1 n(@
Ry, = N Norm (f_52) _ Ng(f-.zp) = Np ZR2 E*(f.,2) ng(zg)
Nyon(fes2)  Ng(fo)-Ng 22 1 ng(2)
Ng(f,»2g) = Np ZRZ Ez(f+,Z) ne(zg)

J Look up these two ratios on the calibration curves to infer
the corresponding Temperature and Wind.



Na Density Derivation

1 The Na density can then be inferred either from the peak
frequency signal or from a weighted average of all three
frequency signals.

J The weighted effective cross-section is

Oy o = O, +0Q0, + pO_

where a and  are chosen so that

é)aeﬁ”_ wgt _ O, aaeﬂ_ wgt -0
T N

J The Na density is then calculated by

2
< Nnorm( a’Z)+aNnorm( +’Z)+ Nnorm P
Ny, (2)= 4mng(zg )0k — J. J. P (f-2)
R o,+0a0, + ffo_




Comparison of Different R,, Metrics
J Different metrics of R, result in different wind sensitivities
[ The ratio Ryy= N,/N_ has inhomogeneous sensitivity
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d CSU ratio Ryy= (N, - N_.)/N, has much better uniformity than
the simplest ratio
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Sensitivity for T and W

J The temperature and wind sensitivities are defined as

St

_OR; /9T AR, /R;

Ry

AT

Sw

"Ry /oW ARy, /Ry,
Ry AW

J PDA frequency offset: usually nonzero, so must be taken
into account. For AR1102 data, the freq offset is 10.27MHz.

Actual laser freq = CW laser freq + PDA freq offset




Lidar Error Analysis

J For any measurement, the results are commonly supposed
to be a mean value with a confidence range: x;, = Ax;

X1 X; X X
Al < /}| T
XO Accurate, but xo \Precise, but

Not Precise

Not Accurate

J In error analysis, accuracy and precision are two different
concepts. Accuracy is concerned about bias, i.e., how far
away is the measurement result from the true valu? Precision
is concerned about uncertainty, i.e., how certain or how sure
are we about the measurement result?

Accuracy
(Bias)
!

Systematic Errors

Precision
(Uncertainty)

:

Random Errors




Error Analysis: Accuracy

d Systematic errors determine the measurement accuracy.
J Possible sources: imprecise information of (1) atomic absorption

cross-section, (2) laser absolute frequency calibration, (3) laser

lineshape, (4) receiver filter function, (5) geometric factor.

] Determination of o

saturation, and optical pumping

Hanle effect modified A, :

5,5,2,14,5,1 —

5, 5.48, 2,15.64, 5, 0.98

J Absolute laser frequency
calibration and laser lineshape.
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Error Analysis: Precision

d Random errors determine the measurement precision.

] Possible sources: (1) random uncertainty associated with laser
jitter and electronic jitter, (2) shot noise associated with photon-
counting system. The latter ultimately limits the precision
because of the statistic nature of photon-detection processes.

J In normal lidar photon counting, photon counts obey
Poisson distribution. Therefore, for a given photon count N,
the corresponding uncertainty is AN =~/N

J For three frequency technique, the relative errors are

11/2

11/2

1 /27 2 1 1/2 1
1+— 1+72 1+— 1+72
R 1/2 N 1 R 1/2 N 1
! (NJZ) Jo 1+R v ( fl) 2 1+R
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Calculation of Errors: Error Propagation

J Systematic and random errors will propagate to the measurement
errors of temperature and wind. T and W errors can be derived by
the use of differentials of the corresponding ratios R; and R,,.

J For 2-frequency technique,

RT(fa ,fc 7T aVR 7GL) =

O f. T VR ,OL)

Ol ( [ 1 VR 0L)

J Temperature errors are given by the derivatives

JT A
O7RT O,fa

JdT JdT

é)f c &GL

JT
AT = — ARy += - Af, + - Af, - — A0y +-— Avg
R

J Using implicit differentiation, we have

R, /OR
AT = AR, Ry [y
oR; | JT

+ Af,

ORy [dRy ) "
of, | T

R, |IR;
T

Jf..




Calculation of Errors: Error Propagation

J The derivatives of R; to each system parameters are

Ry _ o |9 (J)I0x 00 (f,)I0x
o T Oy [) o, f,)

J For example, the uncertainty in R; caused by photon noise results
in the femperature error:

T AR
AT = a—ART = —r
OR R,

00, (fIITT 30, (f)IIT]
Oeﬁ(fc) Ggﬁ(fa)

Where AR;/R; is determined photon counts of both signals and
background, and the bracket gives the coefficient of AT to AR;/R;.

J This differentiation of metric ratio method applies to both

systematic and random errors, depending on the error sources: are
they systematic bias or random jitter?

J For example, the error in f, can be systematic bias and random

Jitter, which will lead to systematic error and uncertainty,
respectively.



Rayleigh Integration Technique

J Molecular scattering is proportional to the atmospheric density,
so the temperature profile can be derived from the relative
atmospheric density profile using the Rayleigh lidar technique.

J The use of high power lasers with the Rayleigh technique was
pioneered by Hauchecorne and Chanin [1980]. The data analysis
approach is very similar to that employed by Elferman in the early
1950s to measure stratospheric temperatures with search light
technique [Elterman, 1951, 1953, 1954].

[ This involves integrating the relative density profile downward
using a starting temperature at the highest altitude in combination
with the hydrostatic equation and the ideal gas law. The starting
temperature may be chosen from a model because when the
equation has been integrated downward by about one and half scale
heights (atmospheric scale height is the altitude range in which
density decreases by the factor 1/e), the calculated temperature is
relatively insensitive to the starting estimation.



Rayleigh Integration Technique

3 The hydrostatic equation dP(z)=-p(z)g(z)dz

P(Z)RT(z)
M(z)

J Integration from the upper altitude yields
p(z9) M(z) | M(Z)sz p(z)8(2) 4
p(z) M(z,) R % p(z)

J Ideal gas law  |P(z)=

T(z)=T(zy)

T(z) = atmospheric temperature profile (K)
P(z) = atmospheric pressure profile (mbar)
p(z) = atmospheric mass density profile (kg/m3)
g(z) = gravitational acceleration (m/s?)
M(z) = mean molecular weight of the atmosphere
R = universal gas constant (8.31432 J/mol/K))
z, = altitude of the upper level starting temperature (m)



Rayleigh Integration Technique

J Atmos mass density vs number density |p(z)= n(z)M(z)/N,

where N, is the Avogadro constant

J Thus, we have

T(z)=T(zy)

n(zy) . M(Z)sz n(z" )M (z')g(z’) dz’
n(z) R v¢ n(z)M(z)

] Below 100 km for the well-mixed atmosphere, we have
M(z) = M(z’), so they cancel out in the integration

n(z0)+ M(Z)on n(Z')g(Z’)dZ,

1(z)=1(zy) n(z) R Y=z n(z)

J Number density ratio (relative number density)
=> Temperature profile



Error Analysis for Rayleigh Tech

J The uncertainty is determined by the photon noise and
upper altitude temperature T(z,). The variance of derived
temperature is given by

+{Var[T(zO)]+ TZ(ZO)}eXp[—2(ZO - 7)/H]

Ng(zp)

T*(z)

Var[T(z)] ~ N-(2)
R

1 After 1-2 scale height, the error introduced by T(z,) is
not important anymore. So the temperature error is mainly
determined by the photon counts and their noise.

J The accuracy of Rayleigh temperature is largely
determined by the hardware - whether PMT is saturated
and whether the saturation causes non-flat background, etc.
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Rayleigh Lidar Instrumentation

J Typical Rayleigh temperature lidar utilizes the commercial
Nd:YAG laser system as it provides robust laser power and
operation. But (short wavelength) resonance fluorescence lidar,
like Fe Boltzmann lidar, also functions as a Rayleigh in the
region free of aerosol and fluorescence (about 30-70 km).

J Rayleigh scattering is inversely proportion to the 4th power
of wavelength. So the shorter the wavelength, the stronger
the Rayleigh scattering, as long as atmosphere absorption is
not too strong.

J Operating in deep Fraunhofer lines will benefit daytime
operation to reduce the solar background.

J Availability and robustness of laser systems are another
consideration in lidar design.



Fe Boltzmann/Rayleigh Lidar

Fe Boltzmann temperature lidar system 120
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Fe Boltzmann/Rayleigh Lidar
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Utah State University Rayleigh Lidar

 Doubled Nd:YAG laser at 532 nm (630 mJ/pulse, 30 Hz)
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Upper and Lower Rayleigh Temperature Profiles For September 24, 1994 Logan Utah
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Greenland Rayleigh Lidar




Greenland Rayleigh Lidar
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ALTITUDE (km)

Sample Results from Greenland

Thin cloud layers at 2, 5, and 7 km (1.06 um only)
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Further Upgrade
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Summary

J Accuracy and precision are two different concepts for
lidar error analysis. Accuracy concerns about bias, usually
determined by systematic errors. Precision concerns about
uncertainty, mainly determined by random errors, and in lidar
photon counting case, mainly by photon noise.

J Calculation of errors for ratio technique utilizes the
differentiation of the metric ratios as described in text. It
works for both systematic and random errors. Certainly,
extra work is needed to identify the systematic errors and
their sources. Photon noise obeys Poisson distribution.

 (Rayleigh) Integration technique relies on the assumptions
of hydrostatic equilibrium and ideal gas law in the atmos

interested. It involves integrating the relative density profile
downward using a starting temperature at an upper altitude.



HW Project #2

J Add error analysis of temperature and wind to your code.

J Of course, you first need to derive the equations for the
temperature and wind errors caused by photon noise, using
the method described in our lecture, textbook, and papers.



