Lecture 15. Lidar Architecture (3)

J CSU field trip review
J Lidar Transmitter
Dual-Acousto-Optical-Modulator
Pulsed Dye Amplification
Injection Seeding Nd:YAG laser
J Lidar Receiver
Faraday filter
Multiple beam interference
(F-P etalon and interference filter)
J More laser basics
Laser resonator

Ring dye laser frequency control
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rof. She Explaining Lidar Principle




Prof. She Showing Lidar Transmitter




Prof. She Showing Return Signal
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CSU Na Lidar Transmitter




Na Doppler Lidar Transmitter
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Acousto-Optical Modulator
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Acousto-Optical Modulator

) Piezoelectric transducer attached to an AO crystal
coverts RF EM wave to acoustic energy. The vibration
produces a traveling acoustic wave across the AO crystal.

J The variation of density causes change in refraction
index, and forms partially reflecting plane mirrors.

J According to the first-order Bragg diffraction condition,
if the incident laser beam, the acoustic wave, and the angle
0 satisfy the following equations (n is the AO refraction

ndex): [k, =2k;sinf  2A,sinf= A, /n

J then part of the incident laser beam will be diffracted by
the acoustic wave and exit the AO with the same angle 0 on
the other side of the AO crystal.

J The diffracted beam will experience a Doppler frequency
shift due to the moving acoustic wave.




Acousto-Optical Modulator
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Pulsed Amplification
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1. Amplified Spontaneous Emission (ASE)
2. Injection-seeded Nd:YAG laser

3. PDA chirp caused by pulsed amplification
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FIGURE 10.23 Schematic representation of the
energy levels of an organic dye molecule. The heavy
horizontal lines represent vibrational states, and the
lighter lines represent the rotational fine structure.
Excitation and laser emission are represented by the
transitions A — b and B — «, respectively.



CSU Pulsed Dye Amplifier




Injection-Seeded Nd:YAG Laser

J When the Nd:YAG laser is unseeded, many modes can be
excited in the YAG laser cavity. The mode beating causes
the YAG laser pulse (in time domain) has unsmooth shape.
This causes the PDA output pulses to have numerous large
side bands, so much wider than Fourier transform limit.

J The injection-seeding at fundamental wavelength 1064nm
significantly reduces the possible number of modes that can
lase and makes the Nd:YAG laser pulses to have nearly pure
Gaussian shape with stable width and height.

J The resulting PDA output spectrum is nearly Fourier
transform limited and highly reproducible.

J Injection seed photons also help the laser pulse to build
up faster, as the intensity is many order of magnitudes
larger than spontaneous emission photons.



Injection-Seeded Nd:YAG Laser

] Buildup-time reduction of the Nd: YAG laser pulse is used
to monitor the injection seeding status.




PDA Output Frequency

J Actual PDA output not only has a broadened linewidth
(larger than the Fourier transform-limitation) but also has a
shifted central frequency. These effects are mainly caused
by three factors:

(1) Amplified spontaneous emission (ASE)

(2) Unseeded Nd:YAG laser pulses

(3) Nonlinear effects during pulsed amplification - chirp!
J Frequency chirp is variation of instantaneous frequency
with time, like a bird chirp.

J Chirp is mainly caused by the optical phase perturbation
during pulsed amplification process.



PDA Frequency Chirp Issue

J Main causes for optical phase distortion include
(1) Heating of the dye solvent - cooling it
(2) Intensity dependence of the refraction index
(3) Time dependence of the gain
J Changing excited-state population
— the time-varying susceptibility of the dye solution
— the change of refraction index
— optical phase distortion
— frequency variation with time during pulse buildup
— broadened linewidth and shifted central freq
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Faraday Effect

J Faraday effect is the rotation of light polarization by
some media under magnetic field. ‘
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J Refraction index n of dilute Na vapor

T o 1 1 1
n=y1l+x=lt+sy=1 +§_\’ —15\”

% is the electric susceptibility of Na vapor



Faraday Effect under Zeeman Splitting
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two circular polarizations

Normalized transmission

Faraday Filter
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Multiple Beam Interference

J Phase difference between two adjacent beams is given by

0= 2—EAL—%TZnhcosz

A

J In the figure, t and r are the amplitude-transmission and
reflection coefficients. Intensity transmission and reflectivity
are the square of t and r, i.e., T = t2 and R = r2.




Multiple Beam Interference

J Total amplitude is the sum of multiple beam amplitudes

4,20,y _ Att’
) = 2 15

UT—Att(1+r 26 +rte
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J Thus, the transmission intensity is
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 Recall R = r?, therefore, we have
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Multiple Beam Interference

J When 6 = 2kn, the transmission light reaches maximum,
which determines the transmission wavelength or frequency.

J If incident angle i = O, transmission wavelengths and
frequencies are determined by

C kc

2nh = kA, Vi = A, "2k

J Thus, the frequency spacing or C
' FSR=——-
Free-Spectral-Range is Ynh
J Full-Width-at-Half-Maximum 1-R ¢
. e . . Avk = *
for each transmission line is R 2nh

] Finesse is defined as " FSR jﬁ/}

F =
Av, 1-R




Interference Fringes
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Fabry-Perot Etalon
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Interference Filter

Single Cavity Bandpass Filter

1/4 Wave High Index Layer

el 1/4 Wave Low Index Layer

- 1/2 Wave Spacer Layer

Semireflective
coatings

[ Interference filters are multilayer
thin-film devices, based on Fabry-Perot
interferometer.

1 Constructive interference at the
desired wavelength (spacer d = A,/2)

- round trip 2d = A,

15<§§§§§;

/ffffffE L ] Destructive interference at other
Spacer at half wavelength waveleng’rhs to block them.

for the desired wavelength
or a multiple of that.
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Interference Filter
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Combination of Interference Filter
and Etalon in Lidar Receiver
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J Typical bandwidth of F-P etalon in lidar receiver is
about 10-30 GHz.



Laser Resonator: Positive Feedback

J Population inversion provides light amplification, however,
a resonator is needed to maintain the laser oscillation.

[ .
S

!
J For a round-trip inside the cavity, the optical length
must satisfy the following relation

2nL = kA

where n is refraction index, L is cavity length, A is
wavelength, and K is an integer number.




Resonator Characteristics

Cavity modes
2nL = k)xl = kC/Vl
2nL = ki, = (k+l)c/v,

Frequency spacing

_c
" onL

Linewidth of each mode

(b) Avk=1:/§° ¢
AR 2nL

Av

Longer cavity — smaller freq spacing
Longer cavity, high reflectivity
— narrower linewidth




Laser: Gain vs. Loss

glv)

threshold gain = loss

(a) (b)

v

<t

Figure 11.13 (a) A case in which five cavity modes have a small-signal gain g, larger than
the threshold g, for laser oscillation. (b) If the gain saturates homogencously, only the mode
with the largest small-signal gain is expected to lase. The others are saturated below the

gain g, necessary for laser oscillation.

[ In steady-state oscillation, "Gain = Loss”. Therefore,
without spatial and spectral hole burning, the laser is
supposed to lase on only one mode at steady-state.



Spatial Hole Burning
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J Standing wave causes spatial hole burning inside laser

cavity, i.e., gain saturation is different at different spatial
locations. It could be mitigated by atomic motion.



Spectral Hole Burning
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J Both standing wave and traveling wave can cause spectral
hole burning in inhomogeneously broadened gain profile.

J Spatial and spectral hole burning allow multiple modes
oscillations in laser cavity.




Solutions to Achieve Single-Mode

J To remove spatial hole
burning, use traveling
wave ring laser cavity.

Optical Diode
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Gain Media

J To remove spectral hole burning, use homogeneously
broadened gain medium, e.qg., dye solvent has collision

broadening - homogeneous broadening.

J To achieve reliable single-frequency operation, more

passive optical filters and active stabilization techniques are
needed fto narrow down linewidth and ensure single-mode and

single-frequency laser operation.
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Ring Dye Laser
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From Verdi

“Four mirror + Dye jet” form the laser resonance cavity.
Unidirectional lasing prevents spatial hole-burning.

Rhomb compensates the astigmatism effect.

Optical diode forces the unidirectional lasing.

BRF + ICA (etalons) select frequency and narrow bandwidth.
“Brewster plate + RCA + M3 PZT” actively control frequency.
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Overall Frequency Selection

BRF (FWHM=2 THz)

thin etalon FWHM=200 GHz) gain profile

X
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J Mode competition and Gain vs. Loss



Freq Selection by BRF & Thin Etalon
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Figure 1.1-17. Thin Etalon Frequency Selection.



Freq Selection by Thick Etalon

Thin Etalon curvature imparts = 2.4 % loss on adjacent orders
10 GHz - enough to suppress oscillation in these orders.
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Figure 1.1-18. Thick Etalon Frequency Selection.
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Frequency Locking in Ring Laser
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Figure 1.1-24. Reference Cavity: Transmission.
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Figure 1.1-26. Ring Laser Optical and Electronic Layout.
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Spectroscopy
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Fluorescence

(Arb. Unit)

Na Spectroscopy in Na Lidar
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Another Look at Ring Dye Laser
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Summary

J By now we have completed the discussions of
lidar principle, architecture, and data retrieval
in general.

J Any questions ?

] Let’s talk about them in the next lecture, as
many as you want.

J Comments and suggestions to the class are
more than welcome.



