Laser Remote Sensing Course Schedule (Spring 2006)

Molecular Structure: nuclear vibration

Molecular Spectra: electronic spectra

Molecular Spectra: rotation spectra

Molecular Structure: molecular rotation

Molecular Spectra: vibration-rotation spectra

Molecular Spectra: nonzero matrix element of dipole

15 weeks X 2 = 30 lectures (75 minutes each)

Week 17 Jan 2006 - Tuesday 19 Jan 2006 - Thursday 1 **Lecture 1. Introduction** Lecture 2. Laser Remote Sensing Overview Introduction Introduction Concept of Remote Sensing History from searchlight to modern lidar Basic Architecture of LIDAR Concept of Remote Sensing System Remote Sensing Aspects and Applications Basic Configurations of LIDAR Classification of Remote Sensing How does LIDAR determine range? Comparison of Remote Sensing Basic Principle of LIDAR - LIDAR Equation How does sodar, radar, & lidar work? Classifications of LIDAR Summary Summary 2 24 Jan 2006 - Tuesday 26 Jan 2006 - Thursday Lecture 4. Quantum Physics in Lidar Principle Lecture 3. Lidar Principle Overview (Cont) Review lidar equation & lidar architecture Overiew of quantum physics An example lidar - K Doppler lidar Quantum theory of light: wave-particle duality Wave-Particle Duality for Material Particles Classification of lidar Comparison of Scattering QM Basic Concepts QM Equation of Motion: Schrodinger equation Summary Stationary states: atomic structure Transition: atomic spectra 2 Feb 2006 - Thursday 3 31 Jan 2006 - Tuesday Lecture 5. Fundamentals of Quantum Mechanics Lecture 6. Fundamentals of Atomic Structure Introduction QM Notation (Dirac) and Representation Principle of Uncertainty (Indeterminacy) Eigenvalue Equation vs. Schrodinger Equation Principle of Superposition of States Atomic Structure: Coulomb Force in Hydrogen Atom **Eigenstates and Eigenvalues** Atomic Structure: Central-Field Approximation Wave Packet Atomic Structure: Pauli Exclusion Principle Atomic Structure: Magnetic Interaction, Equation of Motion - Schrodinger Equation Postulates of Quantum Mechanics Atomic Structure: Influence of Nucleus Atomic Structure: Influence of Extrenal Field 9 Feb 2006 - Thursday 4 7 Feb 2006 - Tuesday Lecture 7. Fundamentals of Atomic Spectra Lecture 8. Fundamenals of Laser Spectroscopy Introduction Introduction Perturbation Theory (time-independent) Laser Spectroscopy: natural linewidth Perturbation Theory (time-dependent) Laser Spectroscopy: collision broadening Atomic Transition: transition probability Laser Spectroscopy: Doppler broadening Atomic Transition: selection rules Classification of broadening Atomic Transition: oscillator strength Voigt Integration Atomic Transition: polarization Effect of instrumental shape or laser shape Atomic Transition: light intensity Saturation and saturation broadening Saturation-absorption spectroscopy 5 14 Feb 2005 - Tuesday 17 Feb 2006 - Friday (1:30-2:45pm) Lecture 9. Fundamentals of Molecular Spectroscopy Lecture 10. Fundamentals of Scattering Theory Introduction Introduction: Nonbound state theory Molecular Structure: qualitative description QM General Theory of Scattering Molecular Structure: QM description Light Scattering by particles Molecular Structure: electronic motion

Elastic and inelastic scattering Nonresonance scattering versus fluorescence QM Calculation of Scattering Cross-section Physics: Induced electronic dipole moment Molecular vibration and rotation dipole moment Rayleigh/Mie Scattering and Raman Spectra Resonance Rayleigh/Raman Scattering

Actual Course Schedule

Instructor: Professor Xinzhao Chu

6	21 Feb 2006 - Tuesday	23 Feb 2006 - Thursday (5:00-6:15pm)
	Lecture 11. LIDAR Equation	Lecture 12. LIDAR Data Inversion
	Introduction	Introduction
	Physical processes in lidar remote sensing	From photon counts to beta n T V R to science
	General form of lidar equation	Considerations for lidar data inversion
	Considerations on officiency and geometry	Proprocoss procedure
	Considerations on enciency and geometry	Preprocess procedure
	Scattering form of lider equation	Process to retrieve beta and h
	Fluorescence form of lidar equation	Process to retrieve 1 and V_R
	Differential absorption form of lidar equation	Summary
	Solutions of lidar equation	
	Summnary	(HW Project#1: process Na lidar density data)
	28 Feb 2006 - Tuesday	2 Mar 2006 - Thursday (5:30-6:45pm)
7	Lecture 13. LIDAR Architecture	Lecture 14. LIDAR Architecture (2)
	Introduction	Introduction
	Basic Architecture	Na Doppler Lidar: 3-frequency technique
	Basic Configuration	Laser Principle in general
	Basic Arrangement	Ring Dye Laser and frequency/bandwidth control
	Considerations on Lidar Instrumentation	Wavemeter (Michelson Interferometer)
	Example: Na Doppler Lidar	Na saturation-absorption spectroscopy
	Example: Fe Boltzmann lidar	Acousto-Ontical modulator
		Dulcad dva amplification
	Summary	Fulsed dye amplification
		Summary
		(Field trip: visit CSU lidar site on Sunday)
	7 March 2006 - Tuesday	9 March 2006 - Thursday
8	Lecture 15. LIDAR Architecture (3)	Lecture 16. Review on LIDAR Fundamentals
	CSU field trip review	Review of Idiar principle and architecture
	Lidar Transmitter	Review of lidar data retrieval
	Dual-AOM, PDA, Injection seeding	Review of QM, spectroscopy, and lasers
	Lidar Receiver	Open discussions
	Faraday filter	
	Multiple beam interference	
	F-P etalon and interference filter	
	More on laser basics	
	14 March 2006 - Tuesday	16 March 2006 - Thursday
9	Lecture 17. Temperature Lidar (1)	Lecture 18. Temperature Lidar (2)
	Introduction to topical lidars	Review of Doppler technique
	Motivations to measure temperature and wind	Procedure to derive T/W from Na lidar data
	Techniques for temperature measurements	Resonance fluorescence Fe Boltzmann lidar
	Doppler technique for T and W measurements	(Principle Metrics Calibration)
	Doppier teelinique for 1 and W medsarements Decembra fluerosconce Na Doppier lider	Fo Boltzmann lidar instrumentation
	(Dringinle, Matrice, and Calibration)	Sensitivity analysis of temperature liders
	Na Doppler lidar instrumentation	Summary
	Summary	
	(Homework: Project-2 Na Lidar T and W)	
	21 March 2006 - Tuesday	23 March 2006 - Thursday
10	Lecture 19. Temperature Lidar (3)	Lecture 20. Temperature Lidar (4)
	Review of Doppler and Boltzmann techniques	Review of Rayleigh Integration Technique
	Doppler Ratio Technique	High-Spectral-Resolution Lidar
	Accuracy versus Precision	Rayleigh Doppler Technique
	Error analysis of Na Doppler lidar	Rotational Raman Technique
	(Accuracy, Precision, Error Propagation)	DIAL Temperature Profiling
	Ravleigh Integration technique	Comparison of Temperature Lidar Techniques
	Frror Analysis of Rayleigh Integration Lidar	Newly Developing Temperature Lidars
	Ravleigh lidar instrumentation	(K Donnler, Solid-State Na and Fe Donnler)
	Summary	Summary
	Summary	Caninary

11

	4 April 2006 - Tuesday	6 April 2006 - Thursday
12	Lecture 21. Wind Lidar (1) Motivations to Measure Global Wind Techniques for Wind Measurements (Doppler wind, direct motion detection, geostrophic wind) Direct Motion Detection Technique (Tracking aerosol/cloud motion, transit time) Direct Detection Doppler Wind Lidar (Atomic absorption lines, Edge Filters, Fringe Imaging) Wind Technique Comparison	Lecture 22. Wind Lidar (2) Guest lecture on Coherent Doppler Lidar By Dr. Sara Tucker
	Summary	(Homework: Project-3 Coherent)
	11 April 2006 - Tuesday	13 April 2006 - Thursday
13	Lecture 23. Wind Lidar (3) Review of Wind Lidar Techniques (Direct Motion Detection & Doppler Wind Lidar) Vector and Horizontal Wind Determination (VAD, DBS, and Modified DBS) Wind Technique Comparison Coherent Detection Doppler Lidar Architecture Direct Detection Doppler Lidar Architecture GroundWinds Doppler Lidar Summary	Lecture 24. Aerosol Lidar (1) Guest lecture on CALIPSO Lidar By Dr. Carl Weimer
	18 April 2006 - Tuesday	20 April 2006 - Thursday
14	Guest Lecture on Temp Lidar Comparison By Dr. Chester S. Gardner	Motivations to Study Aerosol Eldar (2) Motivations to Study Aerosols and Clouds Lidar Detection of Aerosol/Cloud Properties Single-channel vs Multi-channel lidar (Elastic-scattering lidar, Raman lidar and HSRL) Polarization Detection Multi-wavelength detection Lidar detection of PMC and PSC Summary
	25 April 2006 - Tuesday	27 April 2006 - Thursday
15	Lecture 27A. Aerosol Lidar (3) Review of Aerosol Lidars Multi-wavelength and polarization Detection of Aerosols Comparison of Aerosol Lidar Techniques Lecture 27B. Constituent Lidar (1) Motivations to Study Atmosphere Constituents Lidar Detection of Constituents (essentially spectroscopic detection to distinguish species) Metal Atoms by Resonance Fluorescence Lidar DIAL Detection of Molecules and Pollutant (DIAL equation, solution, water vapor measurement) Summary	Lecture 28. Constituent Lidar (2) Review of Constituent Lidars Raman Scattering Lidar for Constituent Detection (Example: water vapor measurement) Raman DIAL (Example: ozone measurement) RVR Raman DIAL Summary
	2 May 2006 - Tuesday	4 May 2006 - Thursday
16	Lecture 29A. Constituent Lidar (3) Conventional Raman DIAL vs. RVR Raman DIAL Multiwavelength DIAL Comparison of Constituent Lidar Techniques Summary for DIAL and Raman Lecture 29B. Target Lidar Motivations for Target Lidar Laser Altimeter GLAS on ICESat Fluorescence Lidar for Liquids and Solids More Target and Imaging Lidars Summary of Target Lidar Techniques	Lecture 30. Review of Lidar Class Concept and Picture of Lidar Remote Sensing General Lidar Equation and the Ideas behind it Physical Processes involved in different Lidars Lidar Architecture Altitude Determination for Different Lidars Topical Lidar Technique Summary (Temp, Wind, Aerosol, Constituent, Target) Classifications of Lidars Challenges in Different Categories of Lidars Novel Lidar Technology and Application Outlook on Lidar Remote Sensing

10 May 2006 - HW Projects Due Wednesday

Conclusion on May 4, 2006 Final Grade on 12 May 2006 Friday