Review of Key Findings From Lidar Observations of Polar Mesospheric Clouds

Xinzhao Chu

University of Colorado

Spring AGU 2006 @ Baltimore

Acknowledgements To

Andrew Klekociuk (AAD) for Davis Data Josef Höffner (IAP) for Svalbard Data Jens Fiedler (IAP) for Andoya Data Gerd Baumgarten (IAP) for Andoya Data Jeffrey Thayer (CU) for Sondrestrom Data Weilin Pan (SRI) for Sondrestrom Data **Chester Gardner (UIUC) for South Pole Collaboration Patrick Espy (BAS) for Rothera Collaboration Graeme Nott (BAS) for Rothera Collaboration**

Lidar Detection of PMC

Time of Flight ⇒ Range / Altitude, Full-Diurnal Detection

PMC Properties Studied by Lidar

Physical Characteristics and Optical Properties

- Altitude, Width, Vertical Structure, Occurrence, etc
- Volume/Total Backscatter Coefficient and Backscatter Ratio
- Interhemispheric Difference, Latitudinal Dependence
- Relationship of PMC Altitude and Brightness
- Common Volume Observations of PMC and PMSE
- Microphysical Properties
- Particle Size, Shape, and Number Density
- Chemistry Role in Upper Atmosphere
- Heterogeneous Chemistry with Metal Atoms
- Relation to Atmospheric Structure and Dynamics
- Diurnal, Seasonal, Interannual Variations,
- Relations to Temperature, Water vapor, Vertical Wind,
- Influence by Gravity Waves, Tides, Planetary Waves, Solar Flux

Review key lidar findings of PMC study in 4 categories

Definitions of PMC Parameters

$$\beta(z) = \int \frac{d\sigma}{d\Omega} (r, \pi) \frac{dn(r, z)}{dr} dr$$
$$\beta_{max} = \max[\beta(z)]$$
$$\beta_{total} = \int \beta(z) dz$$
$$Z_C = \frac{\sum_i z_i \beta(z_i)}{\sum_i \beta(z_i)}$$
$$\sigma_{rms} = \sqrt{\frac{\sum_i (z_i - Z_C)^2 \beta(z_i)}{\sum_i \beta(z_i)}}$$

All backscatter coefficients were converted to 374 nm using the following color ratios:

 $\frac{\beta(374nm)}{\beta(532nm)} = 2.28; \qquad \frac{\beta(374nm)}{\beta(770nm)} = 7.3$

under assumption of lognormal distribution of spherical particles with a median radius of 40 nm & a width of 1.4 [Höffner et al., 2003].

$$\sigma_{rms} = FWHM / \sqrt{8\ln 2}$$

$$\beta_{total} = \sqrt{2\pi} \cdot \beta_{\max} \cdot \sigma_{rms}$$

Above equations were used to convert data, assuming Gaussian distribution of PMC layer, when lack of parameters.

Mean Physical Characteristics

	South Pole (90°S)	Davis (69°S)	Rothera (67.5°S)	othera Svalbard 7.5°S) (78°N)		Sondre (67°N)
Z _C (km)	85.03±0.05	84.06±0.16	84.12±0.12	83.6	83.2±0.05	83.17±0.03
(std)	(1.02)	(3.70)	(1.35)	(1.0)	(1.2)	(1.11)
β_{total}	5.45 ± 0.19	0.83	2.34 ± 0.11	5.1	2.60	2.48
(10 ⁻⁶ sr ⁻¹)	(3.73)	(1.09)	(1.28)	(convert)	(convert)	(2.33)
β _{max}	3.75 ± 0.10	1.61	1.12 ± 0.05	3.0	2.03	2.20
$(10^{-9} \text{m}^{-1} \text{sr}^{-1})$	(2.06)	(1.68)	(0.55)	(2.77)	(2.07)	(2.12)
σ _{rms} (km)	0.75 ± 0.02	0.92	0.93 ± 0.03	0.68	0.51	0.49
	(0.30)	(1.42)	(0.32)	(convert)	(0.26)	(0.25)
Occur Freq.	67.4%	19.3%	27.9%	74%	36.4%	11.8%
PMC Hour	437	136.5	128	226	825	215
Obs. Hour	648	706.2	459	306	2265	1816.7
Obs. Year	1999-2001	2001-2006	2002-2005	2001 + 2003	1997-2004	1994-2003
PMC Period	11/24-2/24	11/20-2/28	11/19-2/2	6/11-8/21	6/1-8/15	6/11-8/22
(to solstice)	(-27 – 65)	(-30 – 69)	(-31 – 43)	(-10 – 61)	(-20 – 55)	(-10 – 62)

References for Above Statistics

- 1. South Pole: Chu et al., JGR, 2003
- 2. Davis: Klekociuk et al., JGR, in preparation, 2006
- 3. Rothera: Chu et al., JGR, in review, 2006
- 4. Svalbard: Höffner et al., Ice Layer Workshop, 2006
- 5. Andoya: Fiedler et al., EGU conference, 2005
- 6. Sondrestrom: Thayer and Pan, JASTP, 2006

PMC Altitude: Hemispheric Difference & Latitudinal Dependence

Southern PMC are ~ 1 km Higher than Corresponding Northern PMC PMC Altitudes are Higher at Higher Latitudes

[Chu et al., GRL, 2001; Chu et al., GRL, 2004]

Symmetric (Gaussian) Distribution of \boldsymbol{Z}_{C}

Model Study of Hemispheric Difference

TIME-GCM Predictions by Raymond Roble of NCAR [Chu et al., JGR, 2003]

Gravity waves may also count for the hemispheric difference [Siskind et al., JGR, 2003]

Recent Results from Satellite

TIMED/SABER data show that SH summer mesopause locates at higher altitude and has colder temp than NH [Xu et al., submitted to JGR, 2006]

Hemispheric Difference & Latitudinal Dependence

SH PMC are higher Z, dimmer, and less frequent than NH

in review, 2006]

	Rothera	Andoya	Svalbard
$K_1 (\times 10^6 \text{ km} \cdot \text{sr})$	-2.3 ± 0.2	-0.46	$\textbf{-0.45}\pm0.6$
$K_2 (\times 10^6 \text{ km} \cdot \text{sr})$	$\textbf{-0.08} \pm 0.06$	-0.10	-0.018 ± 0.006
Divider ($\times 10^{-6} \text{ sr}^{-1}$)	1.6	3.8	3.9

PMC Microphysics: Particle Size

Counts per 150 m channel and 5000 pulses

3-Color Lidar Observations at ALOMAR, Andoya [von Cossart et al., GRL, 1999] Color Ratio is defined as

$$CR(\lambda_1, \lambda_2, z) = \frac{\beta_{PMC}(\lambda_1, z)}{\beta_{PMC}(\lambda_2, z)}$$

Figure 1. Panel (a) shows as a result of Mie calculations for the color ratios *CR* of used laser wavelengths a set of color coded curves for constant σ and r_{med} . In panel (b) the derived color ratios of the 11 NLC events are plotted in the field of the modelled color ratios.

Particle Size by 3-Color Lidar

Spherical particles ⇒ Mie Scattering Theory
Mono-mode log-normal size distribution

$$\frac{dn(r)}{dr} = \frac{N}{\sqrt{2\pi}r\ln\sigma} \exp\left(-\frac{\ln^2(r/r_{med})}{2\ln^2\sigma}\right)$$

3. Refractive index of ice from [Warren, 1984]

Lidar Measurement	Results	at ALOMAR,	Andoya
-------------------	---------	------------	--------

	r _{med} (nm)	σ	N (cm ⁻³)	Model	Reference
1998	51	1.42	82	Spherical Lognormal	von Cossart et al., GRL, 1999
1998	61±7	16±2	61±16		Baumgarten et
2003	51±6	18±2	74±19	Cylinder	al., Ice Layer
2004	46±3	18±1	94±12	Gaussian	worksnop, 2006
2005	46±3	17±1	113±18		

Particle Shape by Polarization Lidar

Between 84.2-85.5km, $\delta_{NLC} = (1.7 \pm 1.0)\%$

Elongated particle with length-over-width ratio > 2.5 [Baumgarten et al., GRL, 2002]

PMC Chemistry Role: Heterogeneous Removal of Metal Atoms by PMC

Complete Fe bite-out occurs in the presence of strong PMC events Competition between uptake of Fe on ice surface and input Fe flux (meteor ablation & vertical transport by eddy diffusion)

Modeling Depletion Uptake coefficients of Fe on ice = 1

Plane, Murray, Chu, and Gardner, Science, 304, 426-428, 2004

More on Heterogeneous Chemistry

Na Density vs. PMC at Greenland [Thayer & Pan, JASTP, 2006]

NORMALIZED

Na DENSITY

RELATIVE

DIFFERENCE (%)

		A_{θ}	A_{12}	$\varphi_{\scriptscriptstyle I2}$	$\Delta \varphi_{\scriptscriptstyle I2}$	A24	$\varphi_{\scriptscriptstyle 24}$	$\Delta \varphi_{\scriptscriptstyle 24}$
ALOMAR	eta_{max} Z_c	11.2 83.0	1.5 0.30	6.71 1.39	5.32	2.3 0.28	4.92 -5.04	9.96
South Pole	eta_{max} z_c	21.4 84.9	2.2 0.15	-4.41 -4.98	0.57	1.9 0.21	-2.71 5.57	8.28

Diurnal Variations at Rothera

PMC versus Gravity Waves

Figure 1. Noctilucent Cloud observed by the ARCLITE Rayleigh Lidar in Sondrestrom, Greenland on the night of 8/8/96-8/9/96. At later times, the increasing background noise due to sunrise is demonstrated. Note the apparent wave structure of the cloud, with a period of ~2-3 hours.

Figure 3. Noctilucent Cloud (NLC) backscatter strength vs. RMS stratospheric density perturbation. Backscatter ranges are geophysical variances ($\pm 1\sigma$ from the mean measured throughout the night). The error on the average RMS value includes shot noise error and geophysical variability. Numbers next to points represent the day in August 1996, unless otherwise denoted.

Strength of Stratospheric Gravity Waves and Brightness of PMC are Negatively Correlated

Shuttle Formed PMC in Antarctica

Columbia Space Shuttle Was Launched on January 16, 2003 from Kennedy Center. 3 Days Later (Jan. 19-20, 2003) High-Altitude Sporadic Fe Layers were Observed at Rothera by Fe Lidar

Figure 2

The evidence for an important contribution of PMC by shuttle traffic calls into question of any interpretation of late 20th century PMC trends solely in terms of global climate change.

Milestones in Lidar Study of PMC

Milestones	Authors, Journal, Year
First PMC observations by lidar in NH	Hansen et al., GRL, 16, 1445-1448, 1989
Ice crystal and temperature associated with PMC	Thomas et al., GRL, 21, 385-388, 1994
First common volume observation of PMC/PMSE	Nussbaumer et al., JGR, 101, 19161-19167, 1996
Diurnal variations of PMC altitude and brightness	von Zahn et al., GRL, 25, 1289-1292, 1998
Gravity wave influence on PMC	Gerrard et al., GRL, 25, 2817-2820, 1998
Particle size and number density measurement using multicolor lidar	von Cossart et al., GRL, 26, 1513-1516, 1999
First PMC observations by lidar in SH,	<i>Chu et al.</i> , GRL, 28, 1203-1206, 2001
Hemispheric difference in PMC altitude	
Diurnal variations of PMC at the South Pole	<i>Chu et al.</i> , GRL, 28, 1937-1940, 2001
Particle shape study using polarization lidar tech	Baumgarten et al., GRL, 29, 1630, 2002
Hemispheric difference study with model	<i>Chu et al.</i> , JGR, 108, 8447, 2003
Latitudinal dependence of PMC altitude	<i>Chu et al.</i> , GRL, 31, L02114, 2004
Heterogeneous removal of metal atoms by PMC ice particles in the mesopause region	<i>Plane et al.</i> , Science, 304, 426-428, 2004
Space shuttle formed PMC in Antarctica	<i>Stevens et al.</i> , GRL, 32, L13810, 2005

Of course, biased point of view!

Conclusions

Lidar observations have made significant contributions to PMC study in four main categories: physical characteristics, microphysical properties, PMC in heterogeneous chemistry, and PMC relations to atmospheric conditions and dynamics.

□ Key results include, e.g., hemispheric difference in PMC altitude, heterogeneous removal of metal atoms by PMC ice particles, particle size distribution, non-spherical particle shape, PMC diurnal, seasonal and interannual variations, etc.

More lidar observations of PMC are needed in areas of PMC microphysics, heterogeneous chemistry, more latitudinal coverage, & PMC response to atmosphere conditions/dynamics.

□ Coordinating ground-based or airborne lidars with AIM satellite mission will benefit the PMC study. McMurdo station in Antarctica and several Arctic stations are good choices.